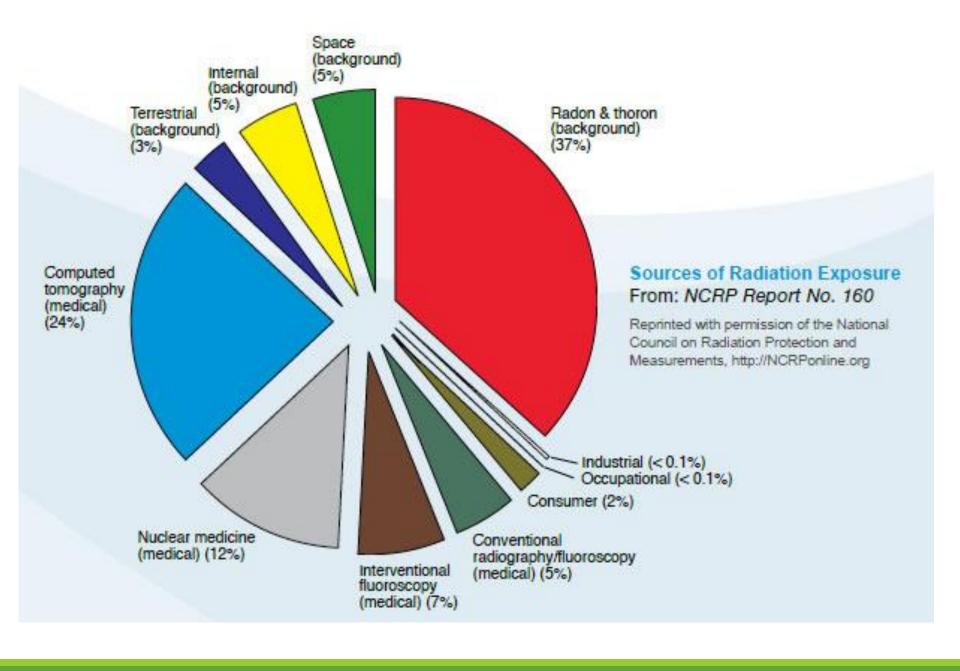
An Overview of Environmental Radioactivity Investigation in Republic of Macedonia


ZDENKA STOJANOVSKA

FACULTY OF MEDICAL SCIENCES,
GOCE DELCEV UNIVERSITY
REPUBLIC OF MACEDONIA

Environmental Radioactivity Investigation

Large-scale surveys, have been performing in a many countries over the world in order to:

estimate average exposures to different radioactive sources

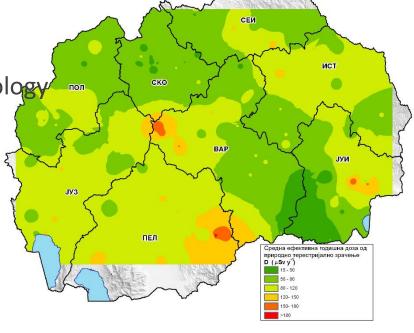
Environmental Radioactivity Investigation in Republic of Macedonia

During last several years, a number of studies on environmental radioactivity issue in Republic of Macedonia appeared as well in international literature.

- > Terestrial radioactivity (soil and building materials)
- ➤ Specific activity of ¹³⁷Cs in mushrooms
- ► Indoor Radon and Thoron concentration
- ➤ Radioecological- determined radionuclide concentration distribution in the environment
- ➤ Dosimetric- estimated effective dose (Sv)

Terrestrial Radioactivity – annual effective dose

○ 213 samples from undisturbed soils at a depth od 0-20 cm due whole country territory (2008 – 2010).


• The estimated annual effective dose due to the natural radionuclides

in the soil: ²²⁶Ra, ²³²Th and ⁴⁰K is

(83 \pm 29) $\mu Sv~y^{\text{-}1}$ or

 $79*/1.4\mu Sv y^{-1}$

o Regional variability correlated to the geology

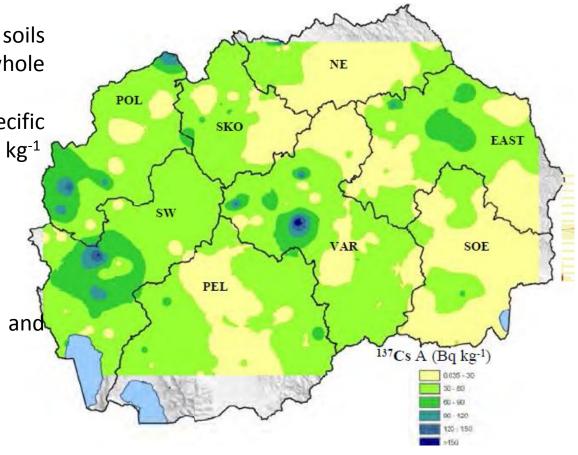
Specific activity of ⁴⁰K, ²²⁶Ra and ²³²Th in cements and its row materials

Sample		²²⁶ Ra	²³² Th	⁴⁰ K
	N	(Bq kg-1)	(Bq kg-1)	(Bq kg-1)
		$AM \pm SD$	$AM \pm SD$	$AM \pm SD$
Gypsum	16	5,9 ± 1,1	$1,4 \pm 0,44$	$11,0 \pm 5,2$
Fly ash I	20	140 ± 89	80 ± 15	540 ± 99
Fly ash II	29	85 ± 17	129 ± 18	786 ± 134
Pozzolana I	17	64 ± 12	69 ± 15	105 ± 43
Pozzolana II	28	80 ± 27	171 ± 48	349 ± 168
Clinker	42	31 ± 6	20 ± 3	234 ± 46
CEM I	19	30 ± 4	20 ± 3	222 ± 36
CEM II/A-M	28	45 ± 7	29 ± 3	272 ± 45
CEM II/B-M	19	50 ± 6	34 ± 4	295 ± 43

Annual effective dose

$$D_E = (200 \pm 89) \mu Svy$$

Specific activity of ¹³⁷Cs in soil


 213 samples from undisturbed soils at a depth od 0-20 cm due whole country territory

 Arithmetic mean value of specific activity: 38 Bq/m³ (0,23 -178) Bq kg⁻¹

• Estimated dose: $(14 \pm 11) \mu Sv y^{-1}$

Regional variability of results

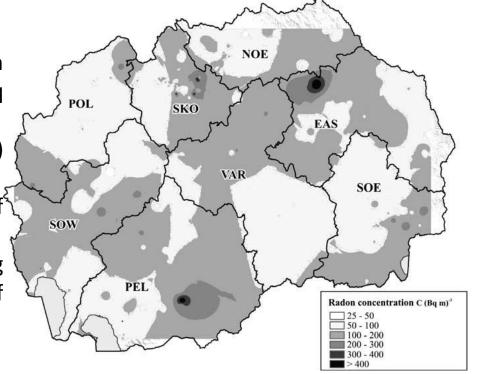
 Correlation with altitude longitude of the areas

Specific activity of ¹³⁷Cs in mushrooms

• Specific activity of ¹³⁷Cs (Bq/m³) in mushrooms collected in Western and Eastern-Central part of country

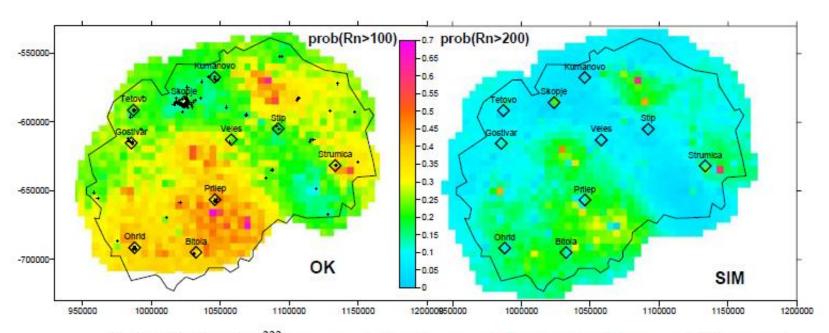
		Western	Eastern & Central
Sample		71	68
Average Value		3.02	2.47
95% Certainty	Lower Limit	2-42	2.02
9570 Certainty	Upper Limit	3.62	2.93
Variation		6.41	3.52
Standard Deviation		2.53	1.88
Minimum		0.21	0.12
Maximum		9.92	9.31
Standard Error		0.30	0.23

Indoor radon(²²²Rn) concentration


430 dwellings (2008-2009)

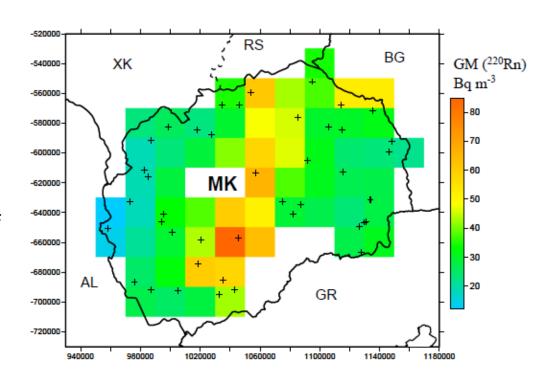
 Geometric mean value of radon concentration: 84 Bq/m³ (3 - 720) Bq m³

 Estimated dose: 2.1 mSv y⁻¹ (0.5-18) mSv y⁻¹


 Regional and seasonal variability of results

 Correlation with geology and building characteristic (floor, presence of basement, building materials)

- ... Zdenka Stojanovska, Jovan Januseski, Peter Bossew, Zora S. Zunic, Tore Tollefsen, Mimoza Ristova, 2011. **Seasonal indoor radon concentration in FYR of Macedonia**. Radiation measurement 46, 602-610.
- .. Zdenka Stojanovska, Jovan Januseski, Blazo Boev, Mimoza Ristova (2012) Indoor exposure of population to radon in the FYR of Macedonia. Radiation Protection Dosimetry:148(2):162-7.


Expected radon risk- estimated from distribution of ²²⁶Ra in soil

- Probability that the ²²²Rn concentration is ground floor rooms of houses with basement exceeds 100 Bq/m³ (left) or 200 Bq/m³ (right), estimated from ²²⁶Ra concentration in soil. Crosses:

Indoor thoron(²²⁰Rn) concentration

- 300 dwellings (2008-2009)
- Geometric mean value of thoron concentration: 28 Bq/m3
- ranged (3 272) Bq m3
- Estimated dose: future goal
- Regional and seasonal variability of results
- Correlation with geology and building materials

Ongoing and future activities

- Radon, thoron and its progeny concentrations in schools
 - Effective dose
 - Teachers and children
- Radioactivity in building materials
- Map of the radon in soil gas