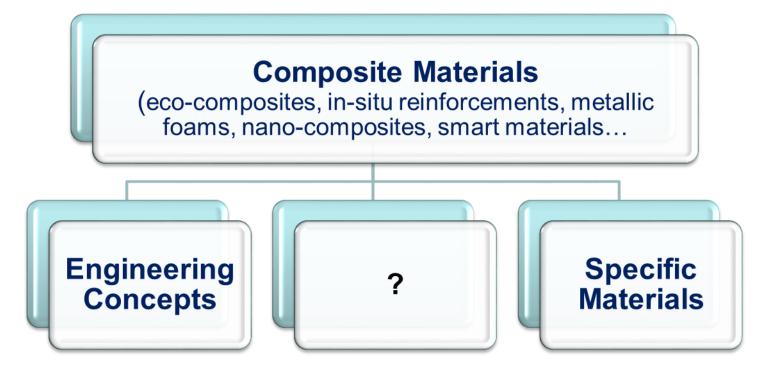


Stabilitätspakt für Südosteuropa Gefördert durch Deutschland Stability Pact for South Eastern Europe Sponsored by Germany

Module Polymers – Ohrid, September 2014

# Preparation and recycling of polymer eco-composites

Dr. Vineta Srebrenkoska, associate professor Faculty of Technology, University Goce Delcev Shtip, Macedonia




## Polymer composites - fibre reinforced polymers

- high performance materials
- for structural applications where high strengthto-weight and stiffness-to-weight ratios are required.
- Requirements multidisciplinary







Main focus would be given on composite materials since we can interfere with their structure and tailor their properties in accordance to the end use requirements.

## Fibre reinforced plastics: matrices, reinforcements

#### Thermoplastic polymers:

- Can be reformed and reshaped by simply cooling and heating,
- ✓ flexible and reformable,
- ✓ Have lower stiffness and strength
- ✓ poor creep resistance at high temperature, and
- ✓ Are more susceptible to solvents

#### Thermosetting polymers:

- ✓ Cannot be remelted and reformed.
- ✓ Offer high rigidity, thermal and dimensional stability, high electrical, chemical and solvent resistance.

## Fibre reinforced plastics: matrices, reinforcements



Engineering plastics are used "as they are" with no possibility to interfere with their structure i.e. their properties. In fact, all these are commercial products.

## Raw materials

#### **Thermosetting resins**

- Epoxy resin for laminating
- Epoxy resin for filament winding
- Phenolic resin
- Vinyl ester
- Polyester resin for pultrusion process
   Accelerator for resins
   Hardener for resins

#### Thermoplastic resins

- Isostatic Polypropylene (PP)
- Poly lactic acid (PLA)
- Polyvinyl butyral (PVB)
- Polycarbonate (PC)
- Polyethylene (PE)
- Nylon







## **Raw materials**

#### Fabrics used for laminating

- Glass, Aramid, Carbon fabric
- Woven roving fabric
- Cotton fabric
- Nonwoven (mat) material

#### **Rovings used for filament winding**

- Glass
- Carbon
- Polyester
- Aramid

#### Natural fibers/fillers

- Kenaf
- Cotton
- Rice hulls
- Paper





#### **DRIVING FORCE FOR A NEW GENERATION**

### **NEW COMPOSITES / ECO-MATERIALS:**

-Petroleum resources depletion rate (100.000 times faster than nature can create it) -Environmental awareness

> New natural fiber reinforced composite materials that are compatible with the environment

## **NEW COMPOSITES ?**

Composites: matrices, reinforcements

## *Eco-friendly; eco-; green; biocomposites*

- Natural fibers - reinforcement

- *Polymer matrix* - thermoplastic recyclable, thermoset, biodegradable, bio-based

### <u>Application</u>:

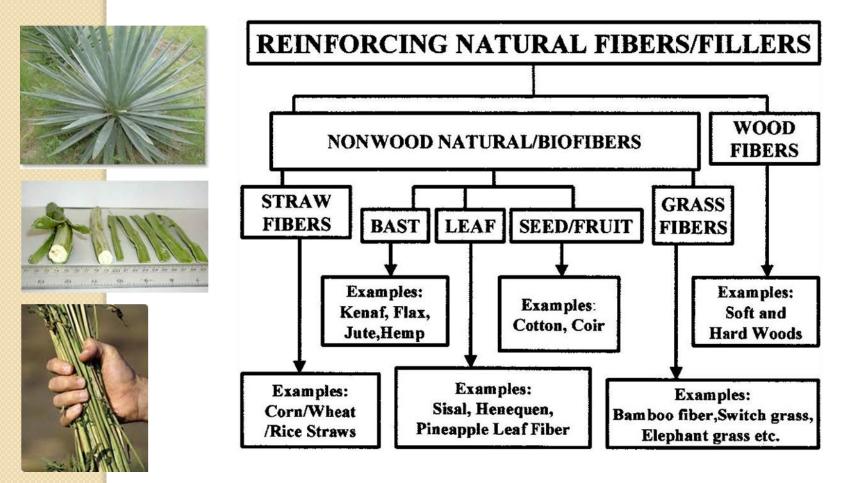
- upgrading existing structures and

- building new ones which can be applied to various types of structures as non bearing materials.

<u>for example</u>: platforms, buildings, interior partition walls, ceilings, flooring, composite structural components with integral thermal and acoustic insulation for improvement of energy efficiency in ecobuildings etc.

## NATURAL FIBERS AS REINFORCEMENTS FOR COMPOSITES

- growing interest in NF reinforced composites
- high performance in terms of mechanical properties, significant processing advantages, chemical resistance, and low cost/low density ratio.
- environmental reasons increased interest in replacing reinforcement materials (inorganic fillers and fibers) with renewable organic materials.
- brief review of the most commonly used polymers and natural fibers (NFs) in a new group of composite materials.


#### Commonly used polymers and natural fibers

| DOLVMEDC                           | NATURAL                    |
|------------------------------------|----------------------------|
| POLYMERS                           | REINFORCEMENTS             |
| Polyhydroxybutyrates (PHB)         | Rice straw                 |
| Polyhydroxybutyratevalerate (PHBV) | Hemp                       |
| Poly(lactic acid) (PLA)            | Jute                       |
| Polypropylene (PP)                 | Sisal                      |
| Polyethylenterephtalate (PET)      | Cellulose (recycled paper) |
|                                    | Kenaf                      |

NFs can represent environmentally friendly alternatives to conventional reinforcing fibers (glass, carbon, kevlar)!







#### Dimensions of some natural fibers

| Fiber  | Average length (mm) | Width (mm)  |
|--------|---------------------|-------------|
| Cotton | 10–60               | 0.02        |
| Flax   | 5–60                | 0.012–0.027 |
| Hemp   | 5–55                | 0.025–0.050 |
| Juta   | 1.5–5               | 0.02        |
| Straw  | 1–3.4               | 0.023       |
| Kenaf  | 2.6–4               | 0.018–0.024 |

- on their origin,
- quality of plants location,
- the age of the plant, and
- the preconditioning.





## Chemical composition and structural parameters of natural fibers

| Fiber  | Cellulose<br>(%) | Hemi-<br>cellulose<br>(%) | Lignin<br>(%) | Extractives<br>(%) | Ash<br>(%) | Pectin<br>(%) | Wax<br>(%) | Microfibril/<br>spiral<br>angle<br>(°) | Moisture<br>content<br>(%) |
|--------|------------------|---------------------------|---------------|--------------------|------------|---------------|------------|----------------------------------------|----------------------------|
| Jute   | 61–71            | 13.6–20.4                 | 12–13         | 1                  | 1          | 0.2           | 0.5        | 8.0                                    | 12.6                       |
| Flax   | 71–78            | 18.6–20.6                 | 2.2           | 2.3                | 1.5        | 2.2           | 1.7        | 10.0                                   | 10.0                       |
| Hemp   | 70.2–74.4        | 17.9–22.4                 | 3.7–5.7       | 3.6                | 2.6        | 0.9           | 0.8        | 6.2                                    | 10.8                       |
| Kenaf  | 53–57            | 15–19                     | 5.9–9.3       | 3.2                | 4.7        | /             | /          | /                                      | /                          |
| Sisal  | 67–78            | 10–14.2                   | 8–11          | /                  | 1          | 10            | 2.0        | 20.0                                   | 11.0                       |
| Cotton | 82.7             | 5.7                       | /             | 1                  | 1          | /             | 0.6        | /                                      | /                          |

Mechanical properties are determined mainly by the cellulose content and microfibrillar angle!

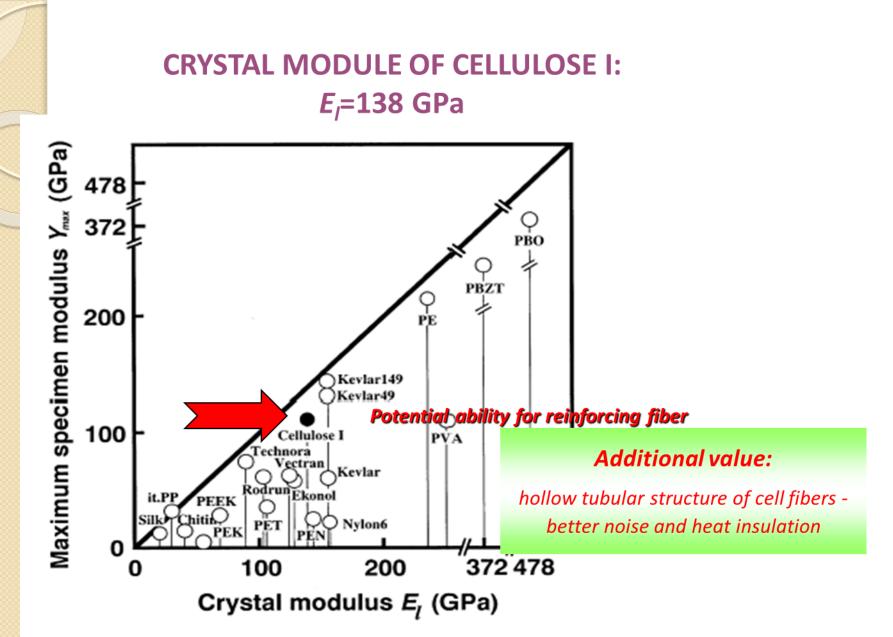



Fig. 2. Relationship between the crystal modulus  $E_1$  and the maximum specimen modulus  $Y_{max}$  already reported for various polymers.

### Basic properties of some natural fibers

| Fiber     | Density<br>(g/cm3) | Elongation<br>at break<br>(%) | Fracture<br>stress<br>(MPa) | Young<br>modulus<br>(GPa) |
|-----------|--------------------|-------------------------------|-----------------------------|---------------------------|
| Cotton    | 1.5                | 7.0-8.0                       | 287–597                     | 5.5–12.6                  |
| Jute      | 1.3–1.46           | 1.5–1.8                       | 393–800                     | 10–30                     |
| Flax      | 1.4–1.5            | 2.7–3.2                       | 345–1500                    | 10–80                     |
| Hemp      | 1.48               | 1.6                           | 270–900                     | 20–70                     |
| Sisal     | 1.2–1.5            | 2.0–2.5                       | 511–700                     | 3.0–98                    |
| Bamboo    | 0.8                | /                             | 391–1000                    | 48–89                     |
| Soft wood | 1.5                | /                             | 1000,0                      | 40.0                      |

## **REINFORCING POTENTIAL OF NATURAL FIBERS**

#### Mechanical properties of natural fibers when compared with conventional reinforcements

| Fiber                | Specific<br>gravity<br>(g/cm3) | Tensile<br>strength<br>(GPa) | Tensile<br>modulus<br>(GPa) | Specific<br>strength<br>(GPa/g cm3) | Specific<br>modulus<br>(GPa/g cm3) |
|----------------------|--------------------------------|------------------------------|-----------------------------|-------------------------------------|------------------------------------|
| Sisal                | 1.20                           | 0.08–0.5                     | 3–98                        | 0.07–0.42                           | 3–82                               |
| Flax                 | 1.20                           | 2.00                         | 85                          | 1.60                                | 71                                 |
| E-Glass              | 2.60                           | 3.50                         | 72                          | 1.35                                | 28                                 |
| Kevlar               | 1.44                           | 3.90                         | 131                         | 2.71                                | 91                                 |
| Carbon<br>(standard) | 1.75                           | 3.00                         | 235                         | 1.71                                | 134                                |

- excellent tensile strength and modulus, high durability, low bulk density, good moldability, and recyclability.

- advantage over conventional reinforcement fibers in that they are less expensive, available from renewable resources, and have a high specific strength.

- application of long NFs instead of short wood-fibers, such as flax, kenaf, and sisal, is reasonable in architectural and civil works because of the specific modulus, close to that of glass-reinforced composites.

## Advantages and disadvantages of reinforcing NF

- low cost,
- high toughness,
- low density,
- good specific strength properties,
- reduced tool wear (nonabrasive to processing equipment),
- enhanced energy recovery,
- CO<sub>2</sub> neutral when burned,
- biodegradability,
- hollow and cellular nature,
- acoustic and thermal insulators,
- exhibit reduced bulk density.

Lack of good interfacial adhesion (cell + lignin + pectin...) Relatively low processing temperature (below 200°C) High sensitivity to humidity Low dimensional stability (swelling, shrinkage)

## TREATMENTS/MODIFICATIONS OF NATURAL FIBERS

#### Research on "a cost-effective" modification of NFs is necessary!

- > Dewaxing (delignification, defatting)
- Bleaching
- Esterification and etherification
- Steam explosion
- Graft polymerization
- Mercerization (alkali treatment)
- Liquid ammonia treatment
- Compatibilizers based on novel silane chemistry
- Isocyanates
  - Permanganate treatment

These treatments should not decrease the thermal stability of fiber!



#### **Eco-Houses Based on Eco-Friendly Polymer Composite Construction Materials**

#### Project tasks:

- Production of eco-friendly polymer composites construction materials - main task
- Development of natural fiber composites suitable for structural applications.
- Application of various forms of plant fibers: short, long, continuous, woven fabrics and non-woven mats and investigation of their influence on 3P (properties/performance/price) ratio.
- Tailoring of the fiber/matrix interactions and interface characterization.
- Mechanical characterization of the produced composites.
- Development of panelized components with integral thermal and acoustic insulation for improvement of energy efficiency in ecobuildings.

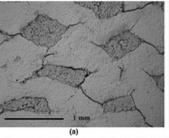


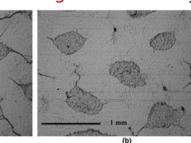
## Several kinds of materials were used:

## <u>1. SMC</u>

- Kenaf/PP
- Kenaf/biocom
- Kenaf/polyester
- Kenaf/PLA

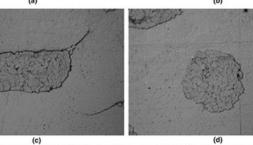
## 2. Pellets

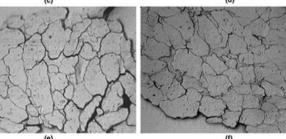

- Kenaf/PLA
- Rice straw/PLA


Different ratio of the main components + coupling agent

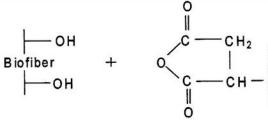


- polymer matrix
   modification (by using compatibilizing agent (CA)
- fiber (surface) modification
- polymer and fiber modification
- processing conditions/new technologies


#### Fiber/matrix interface regionkey factor determining the load transfer

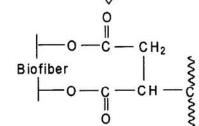




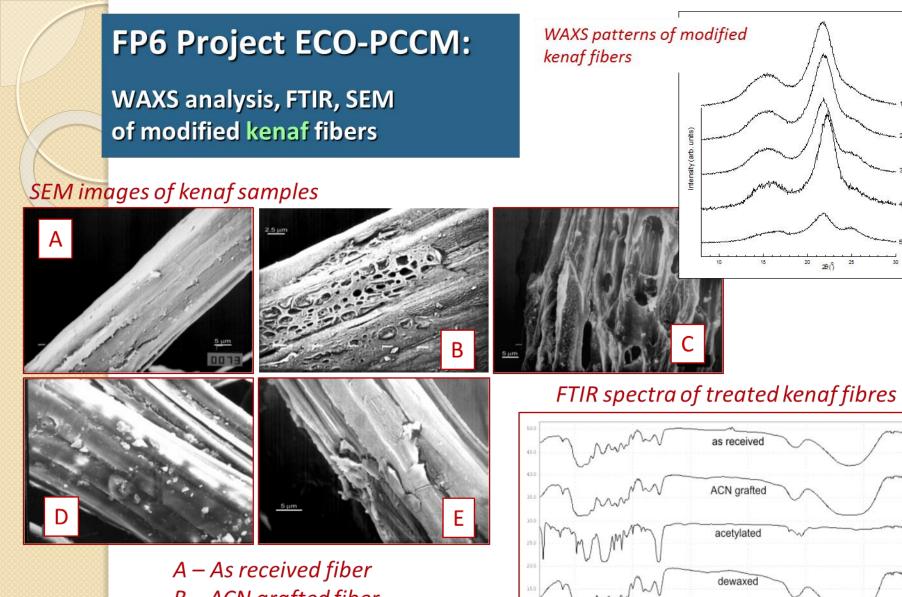


**INTERFACIAL ADHESION:** 

natural fibers embedded in polymer matrix






FP6 Project ECO-PCCM approach: PP, PHB, PHBV, PLA modification with MAHmodified polymers




(Biofiber)

Maleated Polymer

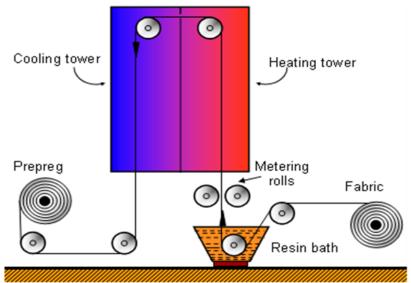


Polymer matrix modification: creation of chemical bonds



alkali tretaec

B – ACN grafted fiber C – Acetylated fiber D – Dewaxed fiber E –Alkali treated fiber


#### Codes of composite samples

| _         | Matrix | x (wt%)          | Fiber/Filler    |               | Coupling agent (CA) |                  |
|-----------|--------|------------------|-----------------|---------------|---------------------|------------------|
| Codes     | Туре   | Content<br>(wt%) | Туре            | Content (wt%) | Туре                | Content<br>(wt%) |
| PP/K/CA   | PP     | 65               | Kenaf<br>fibers | 30            | MAPP                | 5                |
| PP/RH/CA  |        |                  | Rice<br>Hulls   |               |                     |                  |
| PLA/K/CA  | PLA    | 65               | Kenaf<br>fibers | 30            | MAPLA               | 5                |
| PLA/RH/CA |        |                  | Rice<br>Hulls   |               |                     |                  |

Maleic anhydride-grafted PP (MAPP) Maleic anhydride-grafted PLA (MAPLA) were used as coupling agents (CA)



- Impregnation applicable to fabrics only
- Laminating (molding) applicable to prepregs only
- Filament winding applicable to rovings only
- Compression molding open and close mold
- Structural Reaction Injection Molding (SRIM)
- Reinforced Reaction Injection Molding (RRIM)
- Extrusion
- Reactive blending
- Pultrusion





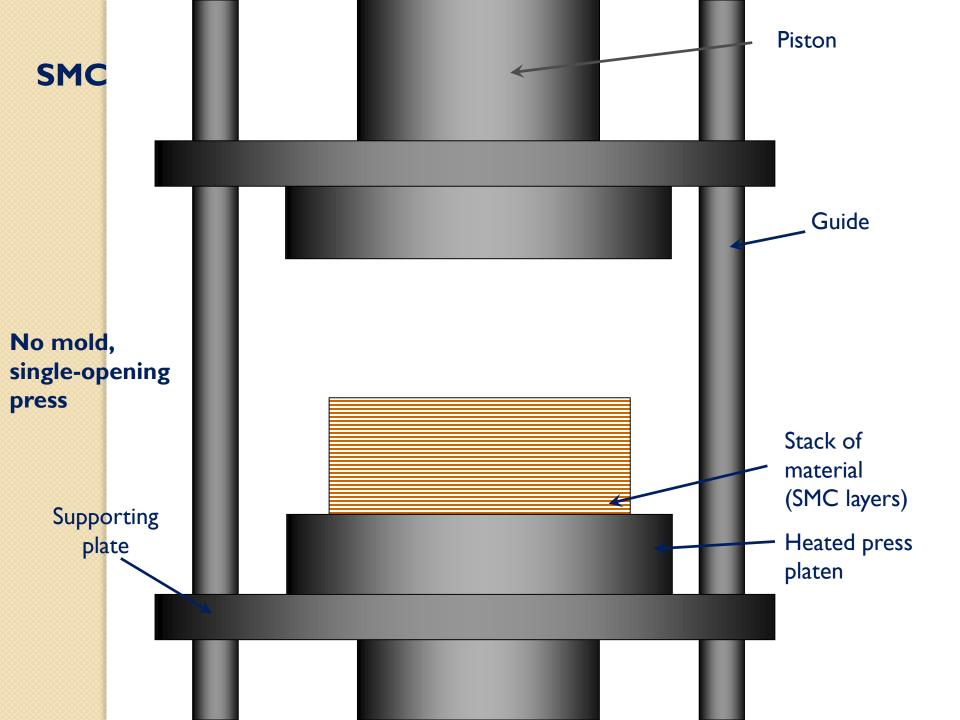
## Compression molding (CM)

- major method for processing plastics
- high pressure process
- applying heat and pressure
- in matched or open dies
- main processing method for thermoset plastics
- also be employed to process thermoplastic materials
- compression molding press
- composite plate
- advantages: short cycle time, high production rate and excellent surface finishes

Materials used for CM:

- SMC (Sheet Molding Compounds)
- BMC (Bulk Molding Compounds)
- Pellets/granules






## **FP6 Project ECO-PCCM:**

Two forms of materials were used:

- SMC (Sheet Molding Compounds)
- Pellets/granules

| * SMC                                 | SMC                                                                                                                                                                                                                                                                                                                                  | Pellets                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No mold technique         Utilization | <ul> <li>Appropriate for big size panels</li> <li>No molding tool is required</li> <li>Multiple panels can be produced in one molding cycle</li> <li>Cheaper manufacturing process</li> <li>Better mechanical properties since longer fibers can be applied</li> <li>Inappropriate for 3D moldings with complicated shape</li> </ul> | <ul> <li>Inappropriate for big size panels</li> <li>Molding tool is required</li> <li>One panel only per cycle</li> <li>Expensive manufacturing<br/>process</li> <li>Only very short fibers can be<br/>used making panels with limited<br/>mechanical properties</li> <li>Better control of fiber/resin<br/>ratio</li> <li>Appropriate for 3D shapes with<br/>complicated shapes</li> </ul> |





## Applied processing techniques

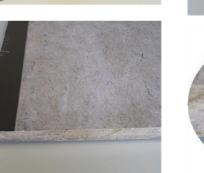
#### Open mold compression molding - Applicable for SMC





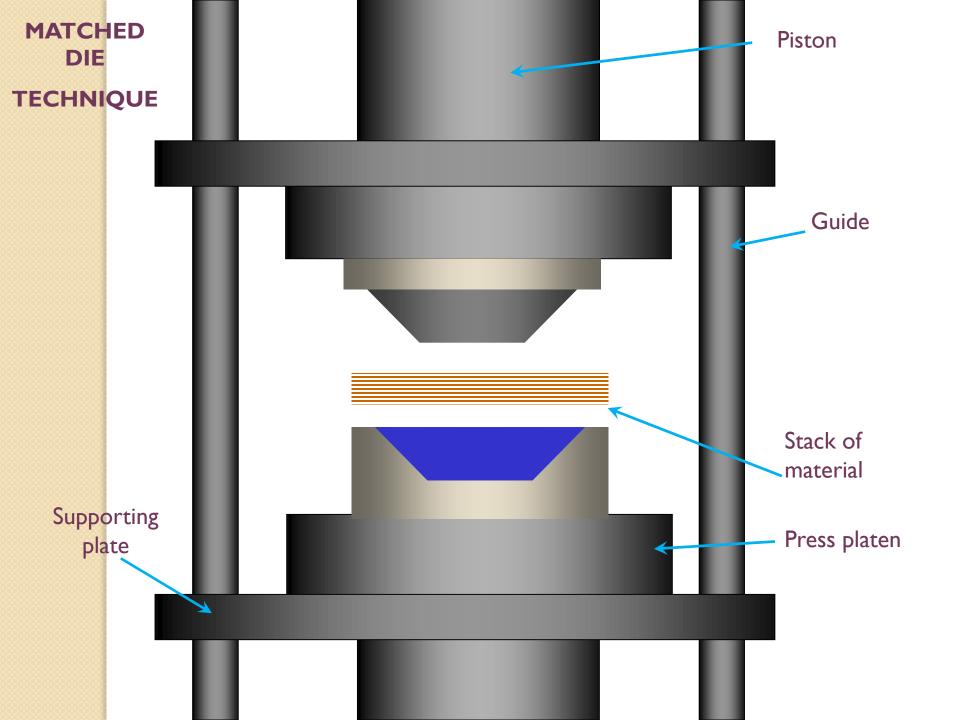


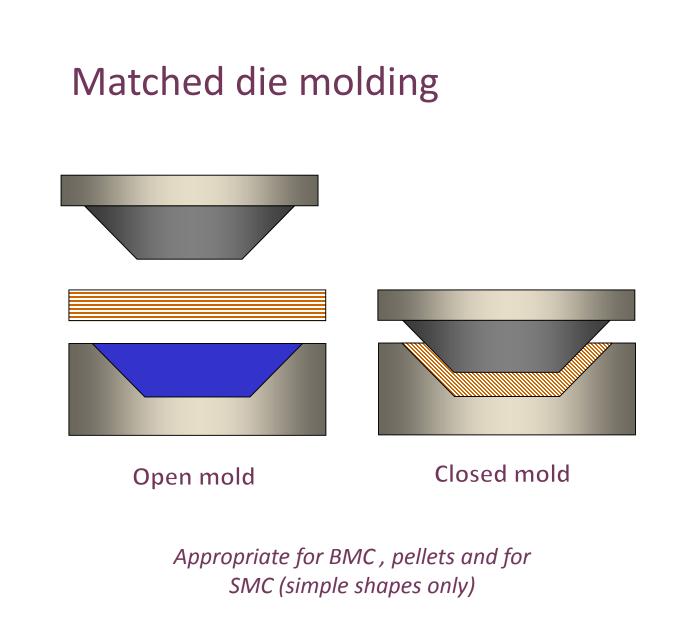







#### Composite plates based on kenaf fibers/thermoplastic polymers








| Property                           | Test Method | Composite based on<br>kenaf fiber |
|------------------------------------|-------------|-----------------------------------|
| Specific weight, g/cm <sup>3</sup> | JUS G.S2.51 | 0,93                              |
| Water absorption, %                | ISO/DP 9674 | 30,5                              |
| Fire resistance                    | UL 94       | burns                             |
| Flexural strength, MPa             | DIN 53457   | 30,1                              |
| Flexural modulus, GPa              | DIN 53457   | 9,0                               |
| Impact strength, kJ/m <sup>2</sup> | DIN 53453   | 65,5                              |
| Compression strength, MPa          | DIN 53454   | 17,4                              |





## Matched die molding












pellets, granules – rice hulls / PP – rice hulls / PLA In both techniques main process parameters are:

- <u>**Temperature**</u> – high enough to let the polymer melt

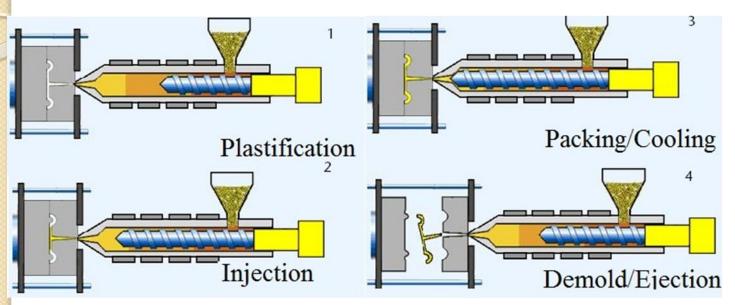
- <u>**Time</u>** - long enough to let the polymer flow</u>

 - Holding pressure – high enough to make the composite stiff, compact, void free

#### Composite plates based on kenaf fibers/thermoplastic polymers and rice hulls/thermoplastic polymers






#### The flexural tests

|                                                           | Stress at peak,<br>MPa | Modulus, MPa |  |  |  |  |  |
|-----------------------------------------------------------|------------------------|--------------|--|--|--|--|--|
| PP / RH / CA<br>60/30/10 <sup>wt</sup> / <sub>wt</sub>    | 42,6                   | 1941         |  |  |  |  |  |
| PP / Kenaf / CA<br>60/30/10 <sup>wt</sup> / <sub>wt</sub> | 51,3                   | 2106         |  |  |  |  |  |
| PLA / RH / CA<br>65/30/5 <sup>wt</sup> / <sub>wt</sub>    | 28,8                   | 3031         |  |  |  |  |  |

## The physical and mechanical properties of the composites produced by compression molding

| Characteristics      | Unit              | Composite:       | Composite:       | Composite:      | Composite:        |
|----------------------|-------------------|------------------|------------------|-----------------|-------------------|
|                      |                   | РР/К/СА          | PP/RH/CA         | PLA/K/CA        | PLA/RH/CA         |
| Flexural strength    | MPa               | $51.3 \pm 4.84$  | $42.6 \pm 3.45$  | $46.7 \pm 3.83$ | $28.8 \pm 3.14$   |
| Flexural modulus     | GPa               | $2.11\pm0.07$    | $1.94\pm0.08$    | $2.05 \pm 0.11$ | $1,63 \pm 0.09$   |
| Impact strength      | kJ/m <sup>2</sup> | $71.4 \pm 4.67$  | $69,2 \pm 3.83$  | $54.3 \pm 3.49$ | $48,7 \pm 4.16$   |
| Compression strength | MPa               | $47.2\pm2.93$    | $36.3 \pm 2.39$  | $34,5 \pm 3.11$ | $21,6 \pm 2.67$   |
| Compression          | GPa               | $1.86 \pm 0.12$  | $1,58 \pm 0.09$  | $1,74 \pm 0.11$ | $1,\!46 \pm 0.07$ |
| modulus              |                   |                  |                  |                 |                   |
| Tensile strength     | MPa               | $29.6 \pm 3.84$  | $22.7\pm4.82$    | $28.3 \pm 6,54$ | $26.7 \pm 1,49$   |
| Tensile modulus      | GPa               | $1.65 \pm 0.025$ | $1.78 \pm 0,014$ | $2.87 \pm 0.23$ | $2.76 \pm 0.11$   |
|                      |                   |                  |                  |                 |                   |

Injection molding technique Processing method for the manufacture of reinforced thermoplastic polymers



Processing cycle of conventional injection molding process

- thermosetting, thermoplastic, fiber reinforced thermoplastics
- in many ways
- the most widely used
- length of fibers is short (about 0.2–0.4 mm)
- manufacturing a variety of parts

#### The mechanical properties of the injection molded composite samples

|    | Characteristics     | Unit              | Composite:      | Composite:      | Composite:      | Composite:      |
|----|---------------------|-------------------|-----------------|-----------------|-----------------|-----------------|
|    |                     |                   | РР/К/СА         | PP/RH/CA        | PLA/K/CA        | PLA/RH/CA       |
| F  | exural strength     | MPa               | $40.1 \pm 4.82$ | $32.8 \pm 3.44$ | $34.1 \pm 3.75$ | $20,7 \pm 2.82$ |
| In | npact strength      | kJ/m <sup>2</sup> | $57.1 \pm 4.76$ | $55.0 \pm 4.13$ | $40.7 \pm 3.86$ | $36.1 \pm 3.46$ |
| n  | ormal to the axis   |                   |                 |                 |                 |                 |
| C  | ompression strength | MPa               | $38.2\pm2.93$   | 28.1±2.43       | $26.5 \pm 2.51$ | $15.8 \pm 1.91$ |
| pa | arallel to the axis |                   |                 |                 |                 |                 |
| C  | ompression strength | GPa               | $27.8\pm2.27$   | $23.5 \pm 2.44$ | $22.6 \pm 2.01$ | $13.6 \pm 1.83$ |
| no | ormal to the axis   |                   |                 |                 |                 |                 |
| T  | ensile strength     | MPa               | $23.6 \pm 2.14$ | $17.9 \pm 1.24$ | $21.8 \pm 1.02$ | $20.6 \pm 0.91$ |

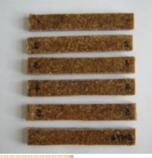


Injection molded inlet tube for "Tomos" water pump based on Kenaf/PLA

#### Investigation of the recycling ability of eco-composites

**PP matrix** - extruded one and two times (PP x1 and PP x2) **PLA matrix** - extruded one time (PLA x1) into strips

**PP recycled based composites** 


**PLA recycled based composites** 

Eco-composites - by recycling one and two times

- it has been molded by thermo compression
- plates with thickness 3 mm are produced



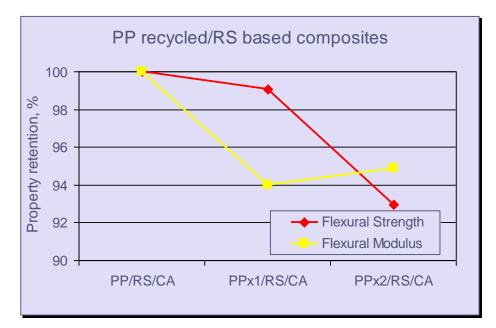


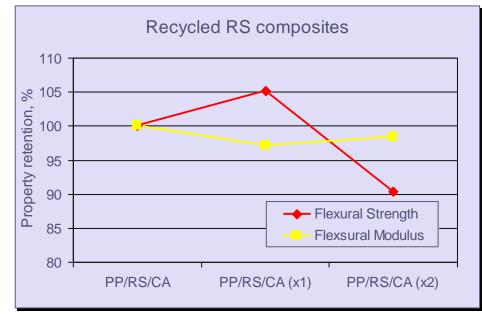









#### The flexural tests for PP recycled based composites


|                                                             | Stress at peak,<br>MPa | Standard<br>Deviation | Modulus, MPa | Standard<br>Deviation |
|-------------------------------------------------------------|------------------------|-----------------------|--------------|-----------------------|
| PP / RS / CA<br>60/30/10 <sup>wt</sup> / <sub>wt</sub>      | 42,6                   | 3,4                   | 1941         | 82                    |
| PPx1 / RS / CA<br>60/30/10 <sup>wt</sup> / <sub>wt</sub>    | 42,2                   | 1,2                   | 1825         | 41                    |
| PPx2 / RS / CA<br>60/30/10 <sup>wt</sup> / <sub>wt</sub>    | 39,6                   | 4,6                   | 1842         | 63                    |
| PP / Kenaf / CA<br>60/30/10 <sup>wt</sup> / <sub>wt</sub>   | 51,3                   | 4,8                   | 2106         | 68                    |
| PPx1 / Kenaf / CA<br>60/30/10 <sup>wt</sup> / <sub>wt</sub> | 51,1                   | 3,0                   | 2346         | 204                   |

#### The flexural tests for PLA recycled based composites

|                                                        | Stress at peak,<br>MPa | Standard<br>Deviation | Modulus, MPa | Standard<br>Deviation |
|--------------------------------------------------------|------------------------|-----------------------|--------------|-----------------------|
| PLA / RS / CA<br>65/30/5 <sup>wt</sup> / <sub>wt</sub> | 28,8                   | 6,6                   | 3031         | 182                   |
| PLAx1 / RS / CA<br>65/30/5 wt/ <sub>wt</sub>           | 14,8                   | 1,3                   | 2275         | 457                   |

## **Recycling properties**





*Recycled polymer matrices could be used for production of new composites* 

*Recycled eco-composites could be reused as composite components* 

*Polymer eco-composites represent a good potential for utilization after recycling* 

## **APPLICATION**

- as non bearing material
- as interior partition walls, ceilings, flooring
- as thermal and acoustic insulation for improvement of energy efficiency in ecobuildings
- furniture
- automobile door panels, dashboards
- *etc.*





## Thank you