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The main goal of the presented research is to define a methodology for determination of the 

transition probabilities in a Markov Decision Process on the example of optimization of the quality-

accuracy through optimization of its main measure (percent of scrap) in a Performance 

Measurement System. This research had two main driving forces. First, today’s urge for 

introduction of more robust, mathematically founded methods/tools in different enterprise areas, 

including PMSs. Second, since Markov Decision Processes are chosen as such tool, certain 

shortcomings of this approach had to be handled. Exactly the calculation of the transition 

probabilities is one of the weak points of the Markov Decision Processes. The proposed 

methodology for calculation of the transition probabilities is based on utilization of recorded 

historical data and they are calculated for each possible transition from a state after one run to a 

state after the following run of the influential factor (e.g. machine). The methodology encompasses 

several steps that include: collecting different data connected to the percent of scrap and their 

processing according to the needs of the methodology, determination of the limits of the states for 

every influential factor, classification of the data from real batches according to the determined 

states and calculation of the transition probabilities from one state to another state for every action. 

However, the implementation of the Markov Decision Process model with the proposed 

methodology for calculation of the transition probabilities resulted in optimal policy that showed 

significant differences in the percent of scrap, compared to the real situation when the optimization 

of the percent of scrap was done heuristically (5.2107% versus 13.5928%).  

 

Keywords: Markov decision processes, transition probabilities, performance measurement systems, 

quality-accuracy, percent of scrap. 

 

INTRODUCTION 

 

Today’s turbulent and dynamic market 

environment forces the enterprises to seek for more 

and more comprehensive and complex tools for 

managing their overall activities and processes. 

The need for more accurate and fast decisions is 

bigger than ever. In that direction, almost every 

aspect of enterprises’ functioning is experiencing 

dramatic changes. Performance Measurement 

Systems (PMSs) are one of the significant tools for 

coping with those new circumstances. They are 

already accepted as a foundation of several 

management approaches/philosophies, like Total 

Quality Management (TQM), Lean Management, 

Strategic Management, etc. Their main intention is 

to picture and quantify the present state of the 

enterprise, pinpointing in that way the directions 

for further improvement of the enterprise. In order 

to accomplish this, they usually divide the overall 

enterprise functioning in several areas (called key 

elements of success, key performance elements, 

etc.). For the needs of the quantification, this 

division should go to such portions of enterprise 

functioning that can be measured with one single 

measure for the whole enterprise. In that sense in 
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COMPASS (COmpany’s Management Purpose 

ASSistance) (Minovski, 1999), the PMS that is 

used in this research, 18 so called subkey elements 

of success (subKEs) are defined. Some of them are 

time-reliability, quality-accuracy, and quality-

capability. This can be expected from one overall 

PMS that wants to encompass the whole enterprise. 

The problems begin when it comes to generation of 

the actions for further improvement of the situation 

(in COMAPSS called Success Factors - SF). The 

number of influential factors on such state is quite 

big. Correspondingly (since one factor can be 

facilitated with several actions – SF) the number of 

SF is even bigger. In such situations, the 

generation of the SF is done mainly heuristically. 

This was the main reason to start the research that 

will attain more robust tools for decision making in 

this point. Since every subKE is a different story 

with different knowledge background, demanding 

different models, the initial research focused on the 

one subKE – quality-accuracy, measured through 

the percent of scrap. The main reasons were its 

importance for the enterprises and the wideness of 

its implementation.  

 

In the research, Markov Decision Processes 

(MDPs) are used for accomplishment of the 

aforementioned goal. Their analysis showed that 

they can be excellent choice due to their proved 

opportunities and advantages. They are seen as one 

of the fundamental models, simple and easy to 

understand, where control of the evolution of a 

dynamic system can be obtained and has an insight 

of the condition of the system in every stage of the 

process. The success of the application can be 

attributed to the existence of efficient algorithms 

for finding optimal solutions for MDP models 

(Puterman, 1994). Still they have certain 

disadvantages. The curse of dimensionality 

(resulting in limited number of analyzed factors in 

situations when we want to obtain exact optimal 

policy) and the calculation of the transition 

probabilities are seen as the most crucial.  

 

In that way, the main research challenge of this 

paper is to define a methodology for determination 

of the transition probabilities in a MDP on the 

example of optimization of the quality-accuracy 

through optimization of its main measure (percent 

of scrap) in one PMS. 

 

So, the frames of this research can be 

presented in several circles, Figure 1. 

 

 
Figure 1: The frames of the research 

 

It has to be stressed that the PMS and quality-

accuracy are just used to explain the methodology 

through practical example. The implementation of 

the proposed methodology goes beyond them and 

can be implemented in every occasion when MDPs 

are implemented and needed historical data can be 

obtained.

 

MATHEMATICAL MODEL OF FOUR-

DIMENSIONAL MDP FOR OPTIMIZATION 

OF CERTAIN SUBKE 

 

All stages of the research are summarized in a 

model for optimal decision policy and success 

factors generation for the critical element quality-

Performance 
Measurement System 

Quality-accuracy  

Improvement 
methodologies 

MDP model for 
optimization of 
certain subKE 

Methodology 
for transition 
probabilities 

determination 
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accuracy of the selected PMS, in order to 

implement it in a real enterprise. The steps of this 

methodology are: 1) defining  the real problem 2) 

scanning of the enterprise and data collection 3) 

selection of most influential factors 4) creation of 

the mathematical model 5) design and selection of 

software 6) analysis of real data and their 

adaptation to the needs of the model 7) software 

implementation and output processing 8) analysis 

of the results 9) unification of results for all jobs 

and comparison to real condition of the enterprise 

10) making report with conclusions and 

recommendations to the enterprise. Figure 2 shows 

the flowchart of the research process. 

 

The stage 4 (Creation of the mathematical model) 

from the above methodology is the hearth of the 

whole process. In the following text, the main 

features of this stage will be elaborated.  

 

The condition of a system – one job place is 

modeled in order to follow and optimize the 

percent of scrap. SubKE quality-accuracy is 

influenced by many factors. Some of them are the 

machine, the operator, the tools, the materials, the 

environment, the method, the shifts, etc. In order to 

avoid too complex mathematical model, but on the 

other hand to get sufficiently realistic model that 

will show the condition of the system, only the 

most influential factors or causes of scrap are 

chosen: the machine, the operator, the tools and the 

materials. The model should provide following of 

the induced scrap divided by influential factors and 

overall. Stochastic processes described by random 

variables are defined, which represent the 

conditions of the machine, the operator, the tools 

and the materials regarding percent of scrap caused 

by these causes. A stochastic process represented 

by vector random process is created, consisted of 

the four above mentioned random processes that 

reflect the individual and the total scrap production 

for this system. The conditions of these four 

factors regarding the percent of scrap they caused 

are recorded and classified in finite number of 

states at the end of each run of the work place, 

which give the values of the four 

random/stochastic processes. The recorded real 

data help to find the transition probabilities of each 

possible transition from a state after one run to a 

state after the following run of the work place, 

under the influence of the corrective actions, for 

each of the influential factors. The transition 

probabilities are unaffected by the states of the 

prior work place runs. Because of that, it is 

concluded that the stochastic processes are Markov 

chains and it is assumed that they are discrete-time, 

finite and homogenous Markov chains. For each of 

the Markov chains finite action spaces are defined, 

considering the available decision alternatives i.e. 

corrective actions. Each transition effected by each 

action is followed by certain revenue. All these 

elements define the one-dimensional MDPs. The 

created four-dimensional vector random process is 

also MDP. Its structure is defined in terms of the 

one-dimensional MDPs structures. 

 

SCANNING OF THE ENTERPRISE AND DATA 

COLLECTION

SELECTION OF MOST INFLUENTIAL FACTORS

DESIGN AND SELECTION OF SOFTWARE

CREATION OF THE MATHEMATICAL MODEL

ANALYSIS OF REAL DATA AND THEIR 

ADAPTATION TO THE NEEDS OF THE MODEL

SOFTWARE IMPLEMENTATION AND OUTPUT 

PROCESSING

 

ANALYSIS OF THE RESULTS

UNIFICATION OF  RESULTS FOR ALL JOBS AND 

COMPARISSION TO REAL CONDITION OF THE 

ENTERPRISE 

 

SATISFIES?

MAKING REPORT WITH CONCLUSIONS AND 

RECOMMENDATIONS TO THE ENTERPRISE

DEFINING THE REAL PROBLEM1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

YES

NO

SATISFIES?

NO

NO

 

SATISFIES?

YES

YES

 
Figure 2: Stages of the MDP model for 

optimization of certain subKE. 

 

The first MDP is the random process “the 

condition of the machine after every run of the 

work place”. The random variable   
  is the 
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condition of the machine in a discrete moment  , 

which represents the stochastic process 

   
       i.e. the first Markov chain. At any 

point of time  , the condition of the machine can 

be classified in one of several possible states and 

the random variable   
  in a given moment takes 

values from the defined state space for the 

condition of the machine. In every discrete 

moment of time the random variable   
  takes 

values from the same state space, and further this 

random process is denoted only by    for every 

transition moment and this is also counts for the 

other stochastic processes. All random processes, 

i.e. the given Markov chains are mutually 

independent. The random process    is the second 

Markov chain, which is “the condition of the 

operator after every run of the work place”, 

expressed by the caused percent of scrap from the 

operator. The third Markov chain is the random 

process   , which is “the condition of the machine 

tools after every run of the work place”, expressed 

by the caused percent of scrap from the tools. The 

fourth Markov chain is the random process   , 

which is “the condition of the materials after each 

run of the work place”, expressed by the caused 

percent of scrap from the materials. The random 

process   ,            , takes     
     values. 

The sets of values for these stochastic processes 

are    
    

    
    

       . The same notations 

for the states of the one-dimensional MDPs and the 

values of associated random processes are used in 

order to simplify the notations.   ,             
denote the sets of primary actions (decisions, 

alternatives) for the one-dimensional MDPs and 

       . Let        
    

    
  ,          .  

 

DETERMINATION OF TRANSITION 

PROBABILITIES 

 

One of the main challenges one has to face when 

dealing with MDP model is the difficulty in 

determining or estimating the transition 

probabilities. The accuracy of the estimates of the 

transition probabilities determines the accuracy of 

the Markov model. These estimates are frequently 

made relying on inadequate or incorrect data. 

Sometimes they are only based on expert opinion. 

It is better if they are derived from cohort studies, 

but again may be imprecise or subject to selection 

bias. Small samples or short following of the 

modeled process produce confidence intervals that 

are large relative to the transition probabilities 

(Black et al., 1997). In the area of maintenance, the 

determination of transition probabilities usually is 

done using one of two methods (Ortiz-García et al., 

2006). The usual approach is to observe, from 

historical data, the way in which a system transits 

from a state to another, for every stage of the 

process, and use this to derive/estimate the 

transition probabilities. The other way, is to use 

experienced engineers to estimate the probabilities 

using expert opinion. But many other ideas and 

methods are developed in different fields of 

Markov processes applications such as in (Bath 

and Lal, 1990; Black et al., 1997; Dent, 1973; 

Jones, 2005; Jung, 2006; Kaur and Rajarshi, 2012; 

Mitkovska-Trendova et al., 2008; Ortiz-García et 

al., 2006; Puz et al., 2010; Salkin et al., 1976; Theil 

and Rey, 1966; Welton and Ades, 2005). One of 

them is approximation with some probability 

distribution characteristic for the process.  

 

This paper proposes and describes the development 

of methodology for transition probabilities 

estimation in the frames of the mathematical model 

that advances quality-accuracy management. 

Historical data are used to determine the primary 

transition probabilities. Very often, these data are 

unavailable, or difficult to get, and in the meantime 

are subject to various influences and changes in the 

environment. That also implies changes of their 

values. The model assumes that transition 

probabilities do not change over time, i.e. Markov 

chains are homogenous. The transition 

probabilities are denoted with    
    , and they are 

the conditional probabilities that the random 

process    takes value   
  if its previous value was 

  
 , under the effect of the action   

 ,           
                               .  
 

The state space   for the four-dimensional MDP is 

defined as the set of all ordered quadruplets formed 

by the elements of the value sets of   ,   ,    and 

  , and that is       
    

    
    

     

           
                

     

           
                

   , and it consists 

of         
      

      
      

          

        states. The number of all possible 

transitions between the states of the system is 

calculated by     . The action space is defined 

similarly as the state space 

      
    

    
    

                    

                              

              and it consists of               

                          actions. Using 

the fact that the random variables are independent, 

a method for calculating the joint transition 

probabilities is proposed, knowing those transition 
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probabilities in the one-dimensional MDPs. The 

number of transition probabilities is         . For 

the transition 

    
     

     
     

  

    
      

      
      

  

                   
     

     
     

  , where       

           
  ,                  

  ,       

           
  ,                  

  ,    
            ,                ,    
            ,                , the transition 

probability is calculated by      

           

      

     

           

     . 

 

The primary transition matrices are stochastic and 

that implies that the created transition matrices for 

the four-dimensional MDP are also stochastic. If 

                 ,              
     , the system has 12 primary transition 

matrices 3х3, and that is          primary 

transition probabilities. The state space has 

      states, and the number of actions in the 

action space is the same. The number of all 

possible transitions between the states of the 

system is        , and                
            is the number of the joint 

transition probabilities. The calculated values of 

the primary transition probabilities and the primary 

revenues are input for the software specially 

designed to calculate the joint transition 

probabilities and the associated revenues for the 

four-dimensional MDP. The relatively small 

number of states and actions in the example allows 

to use exact optimization technique and because of 

the relatively short time of finding the optimal 

solution, the discounted policy iteration method to 

solve the MDP is chosen for the research. 

 

REAL APPLICATION OF THE MODEL 

AND RESULTS FOR THE TRANSITION 

PROBABILITIES 

 

The methodology for optimal decision policy and 

success factors generation including the 

mathematical model was implemented in an 

enterprise from the graphic industry in Macedonia. 

It was used to help the improvement of the 

decision-making in quality-accuracy management, 

in order to minimize the scrap and the associated 

costs. Although data are collected for several 

machines for different functions of the production 

process, only the results for the job place printing 

machine that enterprise uses the most and is 

dominant regarding the scrap production are 

presented. Also, only the results of obtaining the 

transition probabilities are given.  

 

The design studio and the printing machine are 

connected with proper software. The machine also 

has software to record total scrap production, but 

not divided by causes, so these records makes the 

operator manually in special daily reports, in order 

to follow causes for scrap. Later these records are 

processed in special forms. The collected data for 

scrap production available for the research referred 

to about 400 successive orders (printing machine 

runs). These data included number of scrap for 

each batch, possible causes for scrap, appropriate 

corrective actions and associate costs. These 

information helped the modeling of the real 

problem. Then the collected data were adapted and 

processed in forms, specially designed for the 

needs of the research. The approved/planned 

amount of make-ready sheets in this enterprise 

meets the available information about the amount 

of make-ready sheets in other enterprises from the 

graphic industry. In their forms only the produced 

scrap after the setup is considered. Considering the 

expert opinion it is concluded that it is more 

appropriate to use the measure percent of scrap and 

the average of percents of scrap in defining the 

states of MDPs. According to the opinion of the 

experts from the enterprise and the collected real 

data for the successive batches with different 

number of sheets printed on the monitored 

machine, it is decided to consider three intervals of 

percents of scrap for every scrap cause. The limits 

are determined according to the average of 

percents of scrap for all batches, for each of the 

causes. The collected data of available corrective 

actions were used to define action spaces for the 

MDPs and three types of actions are defined for 

each cause. Real data give information of all 

transitions from one state to another under the 

influence of certain action. It is assumed that some 

of the transitions are unfeasible and the associated 

transition probabilities are zero. These assumptions 

are that under the influence of action   
  the 

condition of the factor can’t “improve”, and under 

the influence of action   
  and action   

  the 

condition of the factor can’t deteriorate. Thus some 

of the transition probabilities are determined, and 

the transition matrices are: 
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Figure 3 shows the collected historical data for the 

percents of scrap caused by the machine for the 

monitored sample. Table 1 summarizes the defined 

states and actions for each of the four MDPs. 

 

 
Figure 3: Historical data for the percent of scrap caused by the machine. 

 

Table 1: States and actions for the four causes/influencing factors. 
 Machine Operator Tools Materials 

State 1 From 0% to 1.8% From 0% to 8.25% From 0% to 2.4% From 0% to 1.1% 

State 2 Over 1.8% to 3.6% Over 8.25% to 16.5% Over 2.4% to 4.8% Over 1.1% to 2.2% 

State 3 Over 3.6% Over 16.5% Over 4.8% Over 2.2% 

Action 1 Do nothing Do nothing Do nothing Do nothing 

Action 2 

Cleaning,  

maintenance,  

servicing  

performed by  

operators employed  

and trained in the  

company 

Pause, replacement,  

warning 

Cleaning, gluing,  

setting, etc. 

Adapting, adjusting, 

cleaning, addition,  

dilution, etc. 

Action 3 

Servicing performed  

by personnel from  

companies specialized  

and authorized for  

these machines 

Consultation,  

explanation, training  

by more experienced  

and more trained  

employee 

Replacement with  

new tools 

Replacement of  

bad materials 

 

After the classification of the batches in one of the 

three defined states for each of the four influential 

factor i.e. each Markov chain, all transitions are 

counted and classified according to cause, 

influential action, and the starting and the next 
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state. The transition probabilities are calculated 

using the processed data with the formula 

 

    
     

   
    

  
    

 (1) 

 

where   
     denotes the number of times the one-

dimensional MDP described by the random 

variable l was in state with index  , under the 

influence of primary action with index k, and 

   
     denotes the number of times  it made 

transition from state with index   to state with 

index j, under the influence of primary action with 

index k. The notations of the primary states and 

actions are simplified identifying them with their 

indexes. For the given example,          , 
         ,          ,            . Thus the 

calculated transition probabilities can be 

represented in 12 transition probabilities matrices, 

or summarized in Table 2: 

 

Table 2: Transition probabilities for the one-dimensional MDPs. 

   
     

i 1 1 1 2 2 2 3 3 3 

j 1 2 3 1 2 3 1 2 3 

l=1 

k=1 0.811 0.0893 0.0997 0 0.2941 0.7059 0 0 1 

k=2 1 0 0 0.92 0.08 0 0.5106 0.2341 0.2553 

k=3 1 0 0 0.6667 0.3333 0 0.625 0.125 0.25 

l =2 

k=1 0.7556 0.1370 0.1074 0 0.4737 0.5263 0 0 1 

k=2 1 0 0 0.875 0.125 0 0.3889 0.1667 0.4444 

k=3 1 0 0 0.9565 0.0435 0 0.4889 0.1555 0.3556 

l =3 

k=1 0.7658 0.1264 0.1078 0 0.48 0.52 0 0 1 

k=2 1 0 0 0.9655 0.0345 0 0.4082 0.1632 0.4286 

k=3 1 0 0 0.75 0.25 0 0.6875 0.1875 0.125 

l=4 

k=1 0.8022 0.1079 0.0899 0 0.4211 0.5789 0 0 1 

k=2 1 0 0 0.8 0.2 0 0.4063 0.2187 0.3750 

k=3 1 0 0 0.8571 0.1429 0 0.45 0.35 0.2 

 

All determined values for the transition 

probabilities are input for specially designed 

software for calculation of the transition 

probabilities and associate revenues for the four-

dimensional MDP. For the considered dimensions 

of the model the output from the designed software 

are 81 transition probabilities matrices with 

dimensions 81x81 and 81 revenue matrices with 

the same dimensions. They are very big and it is 

not possible to show them in the paper. They also 

are input for the policy iteration method. 

 

For certain discount factor, and the obtained 

optimal policy, the expected percent of scrap for 

the optimal policy per transition step can be 

calculated. This means that under the optimal 

policy, for each subsequent batch/lot from now on, 

one can expect an average percent of scrap that 

reflects the improvement of the condition of the 

system. The concluding comparison is that the 

average value of percent of scrap for the selected 

sample of the real system was 13.5928%, and with 

the obtained optimal decision policy proposed by 

the mathematical model it will decrease to 

5.2107%. The I/P matrixes are used to present the 

situation in the enterprise before and after the 

improvement (Minovski and Jovanoski, 2000). The 

improved value for the performance of the sub-key 

element quality-accuracy is entered in the revised 

I/P (Importance/Performance) matrix (the initial 

matrix was designed for the situation before the 

improvement). It is clear that the subKE quality-

accuracy was in the problematic quadrant with 

high importance and low performance. After the 

improvement, this subKE moved to the quadrant 

with high importance and high performance. 

Figure 4 shows the revised I/P matrix. 

 

RESULTS AND DISCUSSION  

 

The implementation of the MDP model with the 

proposed methodology for calculation of the 

transition probabilities resulted in optimal policy 

that showed significant improvement in the area of 

quality-accuracy. The difference in the percent of 

scrap (as the main measure for the quality-

accuracy) of the new situation compared to the real 

situation (when the optimization of the percent of 

scrap was done heuristically) is quite big. These 

figures are 5.2107% versus 13.5928% accordingly.  
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Figure 4:. Revised I/P matrix. 

 

As mentioned before, the importance of the 

accurate calculation of the transition probabilities 

is one of the crucial factors for implementation of 

the MDPs. Namely, the accuracy of the transition 

probabilities determines the accuracy of the MDP 

itself. In that direction, this paper proposes 

implementation of the following summarized 

methodology for their determination. 

 Gathering data for every factor (it is assumed 

that the factors are already determined in the 

principal methodology).  

 These data encompass the percent of scrap for 

batches in certain period of time, including the 

causes (influential factors) of scrap and 

undertaken corrective actions.  

 Adaptation of the data  

 In case the data are obtained in other format 

(number of scrap pieces), the percent of scrap 

should be calculated. This percent of scrap is 

calculated separately for every influential factor 

for every batch. 

 Also, the corrective actions are classified in 

several groups of actions according to their 

similarity (in this case, three actions for every 

influential factor are defined). 

 Calculation of the average percents of scrap for 

the whole sample per influential factor  

 Determination of the number of states for every 

influential factor and calculation of the control 

limits for every state. If there are l influential 

factors and the number of states for every 

influential factor is   , the possible number of 

transitions for every influential factor is   
 . In 

case of 3 states for every influential factor, the 

possible number of transitions for every 

influential factor is 9. For every action there are 

9 such transitions and the total number of 

transitions for every factor is 27. 

 For every batch the classification of every 

influential factor in previously determined 

states is done 

 Counting of the number of transitions from one 

state to another consequent state under the 

influence of every action is performed 

 Calculation of the transition probabilities 

(according to the formulas given in the previous 

text) 

 

CONCLUSIONS  

 

The calculated probabilities are just the estimation 

of the real probabilities in frames of some 

confident intervals. Theoretically, the calculation 

of such intervals demands gathering the data in 

longer period of time and utilization of certain 

statistical analysis (Ortiz-García et al., 2006). Still, 

even if this kind of analysis is done, environmental 

changes might question the obtained results. 

Anyhow, this is one of the main directions for 

further research in this area. 
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The methodology is based on the thorough 

collection of the historical data which will obtain 

the percentage of scrap for every influential factor 

and every corrective action for every consecutive 

batch in a certain period of time. This kind of 

monitoring of percent of scrap is not always 

available in the praxis and this may be a certain 

obstacle in the implementation of the proposed 

methodology.  

 

However, the implementation of the MDP model 

with the proposed methodology for calculation of 

the transition probabilities resulted in optimal 

policy that showed significant differences in the 

percent of scrap between the new (optimized) and 

the initial situation.  
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