FINDING AN EFFECTIVE METRIC USED FOR BIJECTIVE S-BOX GENERATION BY GENETIC ALGORITHMS

Tsonka Baicheva, Dusan Bikov, Yuri Borissov, Limonka Lazarova, Aleksandra Stojanova, Liliya Stoykova, Stela Zhelezova

Problem set by SANS: Nikolay Nikolov, Georgi Ivanov

27.09.2014

WHAT IS S-BOX?

In cryptography, an S-box (substitution-box) is a basic component of symmetric key algorithms which performs nonlinear substitution.

S-boxes transform n-binary input into m-binary output.

WHAT IS BOOLEAN FUNCTION?

Let B={0,1} and Bⁿ = {0, 1}ⁿ. Every function f : Bⁿ → B is called Boolean function of n variables.

 $\boldsymbol{B}_{n} = \{ f \mid f : B^{n} \rightarrow B \}, |\boldsymbol{B}_{n}| = 2^{2^{n}}$

• Let $f_1, f_2, ..., f_m \in B_n$. Mapping $F: B^n \to B^m$ defined by the rule $F(x) = (f_1(x), f_2(x), ..., f_m(x))$, is called vectorial Boolean function and $f_1, f_2, ..., f_m$ are its coordinate functions. WHAT IS S-BOX?

Let S be the substitution table of an **n-binary input**

into **m-binary output** mapping, that is, if $B = \{0,1\}$.

 $\mathbf{S}:\mathbf{B}^{n}\to\mathbf{B}^{m}$

 $x = (x_1, x_2, ..., x_n) \rightarrow y = (y_1, y_2 ..., y_m) = S(x)$

S can be considered as a vectorial Boolean function,

consisting of **m** individual **n**-variable Boolean functions

 $f_1, f_2, ..., f_m$, referred to as **coordinate** Boolean

BIJECTIVE S-BOX

- An (n x n) S-Box S is called bijective, if S is an invertible mapping over Bⁿ.
- Bijective S-Boxes represent **permutations** of their 2ⁿ inputs.
- Walsh-Hadamard Transform (WHT) spectrum of f(x) is the set of all 2ⁿ spectral coefficients for the elements in Bⁿ
- WHT Spectrum Matrix is the matrix of WHT spectrum of all coordinate Boolean functions.

S-BOX CRITERIA

BENT S-BOX

An (n x m) S-Box S is referred as a **Bent** S-Box, if WHT Spectrum Matrix is entirely flat.

Bent S-Box has the highest possible nonlinearity.

Bent itself is not satisfying for our purposes- It is not balanced and exists only for even $n \ge 2m$.

THE GROUP GOAL

We focus on achieving good performance according to the nonlinearity criterion – finding S-Box close to Bent S-Box.

Suggestion 1: Exponential S-Box

For the genetic algorithm, generate the initial parent pool of bijective S-Boxes, P_1 , P_2 , ..., P_T , where P_i are **exponential S-boxes**. (S. Agievich, A. Afonenko, 2005)

Exponential S-Boxes are proven to have good cryptographic properties.

Suggestion 2: Change the cost function

The cost function can be computed by using the maximum of the differences between the spectral coefficients of each coordinate function.

S-Box

b _{0,0}	b _{1,0}		b_2^{n} -1,0
b _{0,1}	b _{1,1}		b_2^{n} .1,1
•			
• •	•••	•••	
$b_{0,2}^{n} - 1$	$b_{1,2}^{n} b_{-1}$		$b_2^{n} b_{-1}, a_{-1}^{n}$

WHT spectrum

W _{0,0}	W _{1,0}	W _{0,0}
W _{0,1}	W _{1,1}	$W_{1,2}^{n}$ -1
W _{0,} 2 ⁿ -1	W _{0,} 2 ⁿ -1	${{{{\bf{w}}_{2}}^{n}}_{2}}^{n}$ -1,

Their cost function:

$$\sqrt[P]{\sum_{j=0}^{2^{n-1}} |w_{i,j} - w_{i,j+1}|^{P}}$$

Our cost function:

$$\begin{split} &\Delta_i \text{-max difference of } i^{\text{th}} \text{ coordinate} \\ &\Delta_i = max_i \begin{cases} w_{i,j} - w_{i,j+k} | j \in (0,2^n-1); \\ & j+k \leq 2^n-1 \end{cases} \end{cases}$$

$$\Delta_{WHT} = max\Delta_i, i \in (1, 2^n - 1)$$

1) $\Delta_{BENT} = 0$

2) $(\Delta_1, \Delta_2, ..., \Delta_{2^n-1}) S_1 \to count \Delta_i = 0$ $(\Delta_1, \Delta_2, ..., \Delta_{2^n-1}) S_2 \to count \Delta_i = 0$ If $\Delta_{S_1} \approx \Delta_{S_2}$ then the second condition can be used and the S-box which has more $\Delta_i = 0$ is chosen

Suggestion 3: Change the cost function

Another cost function can be computed by using the dispersion of the WHT spectrum of each coordinate function.

Let a_0 , a_1 ,..., a_{2k} be possible values of the WHT spectrum matrix and $p_{i,j}$ be the probability of appearing a_j in the ith column. Then the mathematical expectation is

$$E(w_i) = \sum_{j=0}^{2k} a_j p_{i,j}$$

The dispersion of the ith column of the WHT matrix is:

$$D(w_i) = E(w_i^2) - (2^{\frac{n}{2}})^2 = \sum_{j=0}^{2\kappa} a_j^2 p_{i,j} - 2^n$$

The dispersion of the S-Box is:

$$D(S) = \frac{1}{2^{n-1}} \sum_{i=1}^{2^{n-1}} D(w_i)$$

Smaller dispersion means flatter spectrum and better S-Box.

Suggestion 4: Examine smaller S-Boxes

Examine the behavior of the genetic algorithm on 4x4 S-boxes and compare the results with the already known optimal ones.

• This can give verification of the method and some suggestions for the cost function.

Suggestion 5: New approach

- Quasigroups as a Tool for Construction of Optimal Sboxes:
 - An algorithm for construction of optimal 4x4 S-box already exists.(H.Mihajloska, D.Gligoroski, 2012)
 - Cryptographically strong 6×4-bit, 8×8-bit and other types of S-Boxes could be produced by extending the above algorithm.

THANK YOU FOR YOUR ATTENTION!