

Moss biomonitoring of air pollution with heavy metals in zinc and lead mine environ

Biljana Balabanova¹, Trajče Stafilov², Katerina Bačeva², Robert Šajn³

¹Faculty of Agriculture, Goce Delčev University, POB 201, 2000 Štip, Macedonia ²Institute of Chemistry, Faculty of Science, Sts. Cyril and Methodius University, POB 162, 1000 Skopje, Macedonia ³Geological Survey of Slovenia, Dimičeva ulica 14, 1000 Ljubljana, Slovenia

INTRODUCTION

The environmental fate of heavy metals absorbed onto dust particles are of growing concern in addressing environmental issues for mine and processing plants environs [1]. Bio-monitoring with moss species was conducted in potential polluted area with presence of lead/zinc mine, where continuously dust distribution occurs. The main aim of this study was to determinate narrower areas with high content of certain heavy metals, and potential long-distant distribution.

um cupressiforme (Hedw.) Campothecium lutescens (De Not.)

MOSS SPECIES

Total of 36 moss samples of moss species (*Hypnum cupressiforme* and *Campothecium lutescens*) were collected from the whole study area (Fig. 1). Random samples (green spots) and samples according to sampling network (5 x 5 km) were collected. Sampling The collection was performed according to the protocol adopted within the European Heavy Metal Survey. For digestion of moss and sample samples, the microwave digestion system (CEM, model Mars) was applied.

preparation

Determina

elements co

QC/QA

Working program

Step	Temperature/°C	Time/min	Power/W	Pressure/bar
1	180	5	500	20
2	180	10	500	20

Teflon digestion vessels

0.5 g of moss samples, 5ml concentrated nitric acid, HNO_3 and 2ml hydrogen peroxide, H_2O_2 (30%, m/V) were added

Closed digestion vessels

Fig. 1. Moss sampling locations

Table 1.	Descrit	otive stat	istics f	for el	lements content	values in moss	samples	(given	in mg	kg^{-1})
							Sampres				/

Element	Ν	Dis	X _a	$\mathbf{X}_{\mathbf{g}}$	Md	min	max	P ₁₀	P ₉₀	S	CV	Α	S
Al	36	log	3218	2510	2459	683	12841	971	5825	2508	77.9	1.97	5.23
As	36	log	2.91	2.07	2.01	0.56	12.8	0.88	7.11	2.87	98.5	2.12	4.26
Ba	36	log	49.1	39.7	44.5	11.0	142	16.5	94.0	32.3	65.8	1.12	1.06
Ca	36	log	6570	6222	6513	2878	14070	4047	9579	2251	34.3	1.05	2.12
Cd	36	log	0.63	0.37	0.31	0.06	3.66	0.141	1.74	0.82	130	2.55	6.55
Со	36	N	0.72	0.56	0.53	0.16	2.60	0.24	1.23	0.58	80.7	1.86	3.64
Cr	36	Ν	2.28	2.03	2.13	0.84	5.10	0.99	3.81	1.08	47.4	0.63	-0.11
Cu	36	log	11.0	8.30	7.18	3.60	56.6	4.25	21.1	11.5	104	2.96	9.13
Fe	36	log	3592	2769	2485	822	17875	1259	6622	3172	88.3	2.85	11.10
Hg	36	Ν	0.037	0.035	0.033	0.021	0.08	0.024	0.05	0.013	34.9	1.19	1.55
K	36	Ν	5154	4853	4598	1977	9745	3264	7978	1830	35.5	0.73	-0.09
Li	36	Ν	1.16	0.98	1.13	0.31	3.90	0.40	1.95	0.70	60.7	1.76	5.46
Mg	36	log	3180	3100	3159	1706	4750	2391	4344	722	22.7	0.41	0.12
Mn	36	log	189	154	157	42.8	550	70.3	394	126	66.6	1.28	1.21
Na	36	log	73.7	45.9	40.9	20.1	885	25.5	102	147	199	5.20	28.56
Ni	36	log	2.92	2.71	2.74	1.05	6.41	1.58	4.17	1.17	40.1	1.31	2.51
Р	36	log	875	827	770	414	1477	555	1343	302	34.5	0.63	-0.88
Pb	36	log	59.8	20.0	23.8	0.14	450	2.46	157	102	170	2.88	8.45
Sr	36	log	18.5	16.8	17.4	7.17	36.3	8.65	30.5	8.09	43.6	0.46	-0.80
V	36	log	3.49	2.84	3.14	0.76	9.69	1.12	6.03	2.21	63.4	0.98	0.74
Zn	36	log	75.6	43.8	35.6	11.4	457	16.9	233	105	139	2.59	6.27

tion of Ontent	Atomic emission spectrometer with inductively coupled plasma, ICP-AES (Varian, 715ES), for Al, Ba Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, V, Zn.
	Electrothermal atomic absorption spectrometer, ETAAS (Varian, SpectrAA 640Z) was applied for analysis of As, Co, and Cd.

Standard	Recovery				
additional method	ICP-AES	ETAAS and CVAAS			
	98.5–101.2 %	96.9 % - 103.2 %			
Reference materials	Moss samples: M2, M3				

10000 samples. 1012, 1012

Cold vapor atomic absorption spectrometer, CVAAS (Varian, SpectrAA) was applied for analysis of Hg.

RESULTS

Table 2. Matrix of dominant rotated factor loadings (F> 0.70)

Dis-distribution (log-lognormal; N-normal); X_a -aritmetical mean; X_g -geometrical mean; Md-median; min-minimum; max-maximum; s-standard deviation; P_{10} -10 percentile; P_{90} -90 percentile; CV-coefficient of variance; A-skewness; E-kurtosis

Significant higher values for Pb and Zn

CONCLUSION

Anthropogenic factor, F1 (Cd-Cu-Pb-Zn), with higher contents concern close mine environ – for lead long-distant distribution occurs.

F2, F3 and F4 occurs as natural phenomena:

- distribution of F2 and F4 undergoes with geology of the region; \bullet
- distribution of F3 reveals on biological background media. \bullet

Extremely high contents for Pb and Zn in "Sasa" mine environ – max values ~ 450 mg/kg

Moss species (Hypnum cupressiforme and Campothecium lutescens) can be used in selected areas, ranging from pollution-free background regions to highly polluted regions

K	-0.30	0.16	0.48	0.75	0.94	
Р	0.29	0.10	0.06	0.87	0.95	
Totl. Var.	25.0	27.3	13.6	13.4	93.1	
F1, F2, F3, F4-Factor loading; Comm - communality						

Pb		Zn
	Campothecium lutescens	

Fig. 2. Scatterplots for comparison of moss species for anthropogenic factor (Cd, Cu, Pb, Zn)

50-100 mg/kg