INFLUENCE OF YEAST STRAINS ON PHENOLIC COMPOSITION AND ANTIOXIDANT ACTIVITY OF VRANEC WINES Violeta Ivanova-Petropulos^{1*}, Arianna Ricci², Dusko Nedelkovski³, Violeta Dimovska useppina P. Parpinello², Andrea Versari² ¹Faculty of Agriculture, University "Goce Delčev", Krste Misirkov bb, Štip, Republic of Macedonia ²Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, Cesena (FC) 47521, Italy ³Institute of Agriculture, "Ss. Cyril and Methodius" University, Aleksandar Makedonski bb, 1000 Skopje, Republic of

Macedonia

*e-mail: violeta.ivanova@ugd.edu.mk

INTRODUCTION

MATERIALS AND METHODS

Wine production has a long tradition in Republic of Macedonia. Now, wine is the second most important export agro-food product after the tobaccoThe wineries are mainly located in the region of the river Vardar valley, in particular in Skopje, Tikveš, and Gevgelija-Valandovo. Red wine represents approx. 60% of the national production and includes different varieties such as Cabernet Sauvignon, Syrah, Merlot, Vranec, etc. Polyphenolic compounds of red wine, including anthocyanins and tannins, are natural dietary antioxidant with potential health benefit and affect the quality of red wines, in terms of astringency, bitterness and color (1,2).

Wine samples

Vranec wines (10 samples) fromTikveš region.

Grapes (ripeness: 23-24°Brix), processed

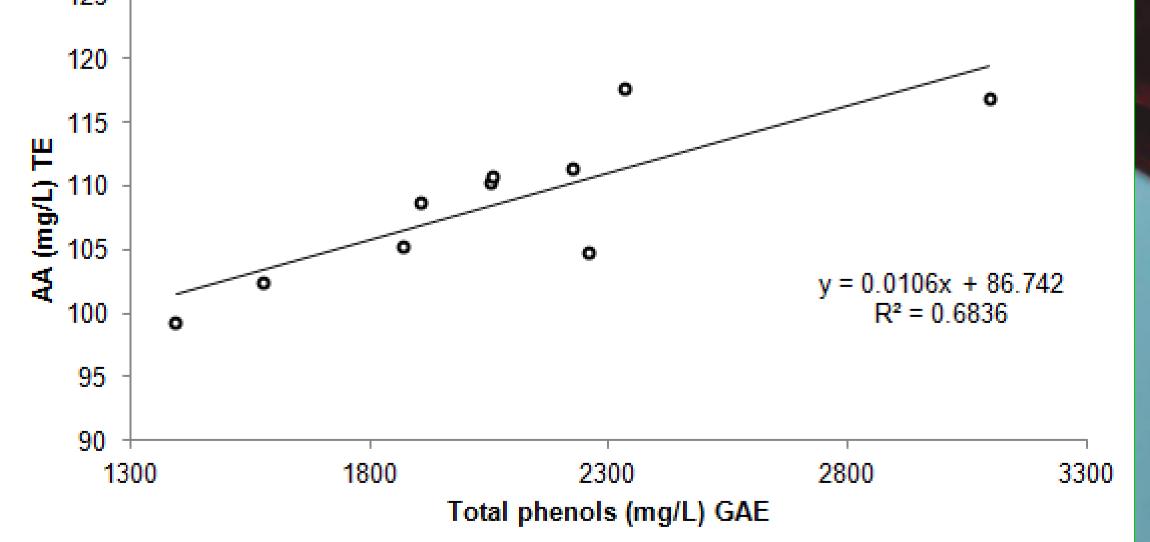
HPLC-DAD analyses

 \checkmark The aim of the work was to assess the influence of different yeast preparations, Vinalco (Macedonian autochthonous yeast) and yeasts from Lallemand, on the phenolic composition and antioxidant activity of Vranec wines.

with crusher/destemmer, SO_2 (ca. 65) mg/L total concen). Inoculation with Saccharomyces cerevisiae yeast strains: Clos, RC212, D254, BDX (Lallemand, Bordeaux, France) (4 wines) Republic of Vinalco yeast (Bitola, Macedonia) (6 wines)

Determination of antioxidant activity (AA)

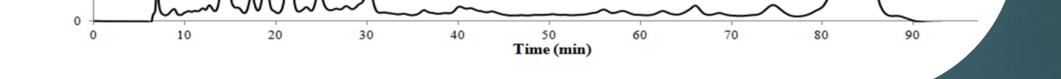
UV-VIS spectrophotometer (Shimadzu, UVmini 1240, Milan, Italy DPPH method, 515 nm . AA expressed as mg Trolox equivalent/L (TE/L).


	HAL.					A MARKEN SA OF A							
Chromeleo	on HP	PLC s	ystem,	ec	uipped with D	AD							
Antho	ocyar	nins		Phenolic acids									
 Column: Gemin mm; 5 µm) Flow rate: 0.9 n Room temperate Injection volum Detection: 530 Gradien elution 	nL/min ture le: 10 µ nm			50 > 4 nı									
A - water/methar 70% perchloric ac	•	80, <i>v/v</i>),	 Gradien elution: A - water/formic acid, 98/2, v/v 										
B - water/metha		75, <i>v/v</i>) v	with 70%		:12:	:2,	v/v						
perchloric acid	t _R /min	В				t _r /min	В						
Program for	0	0	-		Program for	0-50	9						
gradient elution:	23	25	-		gradient elution:	65-70 77	<u>10</u> 30						
	51 60	70	-			80-97	0						
	60 65	100 0	-										
		•	J										

RESULTS AND DISCUSSION

Table 1. Concentration of anthocyanins (mg/L), phenolic acids (mg/L) and catechin of Vranec wines fermented with different yeasts

						_				_						_		
Wines	Dp-Glc	Cy-Glc	Pt-Glc	Pn-Glc	Mv-Glc	Total Glc	Pt- AcGlc	Pn-AcGlc	Mv- AcGlc	Total AcGlc	Pn- coumGl c	Mv- coumGlo	Total coumGlc	Vitisin B	Total Ac	ΣGlc/ΣAcG	ΣGlc/Σcou mGlc	ΣAcGlc/ ΣcoumGlc
V-L1	2.1	27.2	0.9	143	344	388	4.1	3.6	27.5	35.2	4.3	28.2	32.5	n.d.	456	11.0	11.9	1.1
V-L2	19.8	1.1	43.3	24.3	347	435	4.0	5.1	45.2	54.3	2.9	29.0	31.9	3.7	525	8.0	13.7	1.7
V-L3	63.2	5.0	99.1	40.2	335	543	9.7	5.0	27.8	42.4	6.1	29.0	35.1	0.9	622	12.8	15.5	1.2
V-L4	16.5	n.d.	41.5	19.5	355	433	4.2	3.5	44.9	52.6	4.2	30.8	34.9	4.5	525	8.2	12.4	1.5
V-Vi1	38.8	8.1	82.3	73.0	544	746	7.9	12.8	68.8	89.5	8.1	69.9	78.0	n.d.	914	8.3	9.6	1.1
V-Vi2	99.6	20.1	154	134	887	1296	14.7	15.1	96.4	126	15.3	93.5	108	n.d.	1530	10.3	11.9	1.2
V-Vi3	76.6	7.5	114	68.1	524	790	12.8	11.9	61.5	86.3	9.5	54.9	64.4	n.d.	941	9.2	12.3	1.3
V-Vi4	35.7	1.0	63.1	33.6	378	512	7.1	8.1	46.1	61.3	5.1	36.2	41.3	n.d.	614	8.3	12.4	1.5
V-Vi5	59.7	5.5	89.4	50.6	411	617	8.7	6.9	45.0	60.6	5.9	36.2	42.1	2.7	722	10.2	14.6	1.4
V-Vi6	28.9	4.8	47.4	27.9	235	345	3.2	2.6	19.6	25.4	2.8	22.6	25.4	n.d.	395	13.5	13.5	1.0
Minoo	Protocatecuic	Gallic	Syringio	p-Coun	naric Caf	taric C	outaric	Caffeic F	ertaric	Total	Total HCA	Catachin						
Wines	acid	acid	acid	aci	d a	cid	acid	acid	acid	HBA	and HCAD	Catechin	500 -			5	530 nm	
V-L1	98.1	1352	419	60.8	8 2	37	13.7	94.5	19.4	1869	425	567	400 -					
V-L2	44.9	460	161	10.		43	49.1	31.2	21.4	666	355	93	N 300 -					
V-L3	23.7	252	0.5	8.1		76	32.2	10.7	10.7	276	237	482	200 -	1	. 3			
V-L4	31.1	317	30.0	13.2		26	45.2	14.0	36.5	378	335	348	100 -		$\Lambda \sim \Lambda$	4 A	8	. 10
V-Vi1	42.1	265	66.3	3.2		06 75	35.1	8.3	29.7	373	282	150	0				35 40	45 50
V-Vi2 V-Vi3	62.6	311 472	55.3 13.5	18.0 13.3		75 07	55.6 89.2	14.6 11.5	49.4 39.0	429 548	413 660	n.d. 347	700			Time (min)		
V-VI3 V-Vi4	62.6 29.3	291	17.4	11.0		65	68.4		38.4	338	493	271	600 - 500 -	11			280 <u>m</u> m	μ
V-Vi5	37.2	391	n.d.	11.		84	72.9	7.54	30.6	428	507	331	n 400 -	. /				
V-Vi6	50.8	671	n.d.	16.		62	67.1	31.9	43.6	722	521	284	≡ 300 - 200 -		13			
						125 -							100 -		$\int 14$		\wedge	
	100		-										0	10	20 30	40 50 60	70 80	90
						120 -					_	-	250	15		Time (min)		



Abbreviation of Saccharomyces cervisie yeasts: Vi-Vinalco; L-Lallemand yeasts

Fig. 1 Correlation between total phenols and antioxidant activity of (a) Merlot, Cabernet Sauvignon and Syrah wines from different wine regions and (b) Vranec wines produced with different yeast strains for fermentation.

324 nm

Fig. 2. UV-Vis chromatogram of V-L1 Vranec wine sample recorded at 530 nm (a), 280 nm (b) and 324 nm (c) for separation and quantification of anthocyanins, flavan-3ols/hydroxybenozic acids and hydroxycinnamic acids/derivatives, respectively. Peak identification: delphinidin-3-glucoside, (1); cyanidin-3-glucoside, (2); petunidin-3-glucoside, (3); peonidin-3-glucoside, (4); malvidin-3-glucoside, (5); petunidin-(6 acetyl)-3-glucoside, (6); peonidin-(6 acetyl)-3-glucoside, (7); malvidin-(6 acetyl)-3-glucoside, (8); peonidincoumaroyl-3-glucoside, (9); malvidin-coumaroyl-3-glucoside, (10); gallic acid, (11); protocatecuic acid, (12); syringic acid, (13); (+)-catechin, (14); caftaric acid, (15); caffeic acid, (16); *p*-coumaric acid, (17).

CONCRUSION

Wines fermented with Vinalco yeast presented higher amount of anthocyanins as well as phenolic acids (hydroxycinnamic and hydroxybenozoic) compared to the wines fermented with Lallemand yeasts. Wines showed relatively high value of the antioxidant activity regardless the yeast strain used for fermentation.

[1] Ivanova, V., Dörnyei, Á, Márk L., Vojnoski, B., Stafilov, T., Stefova, M., Kilár, F. (2011a). Polyphenolic content of Vranec wines produced by different vinification conditions, *Food Chemistry, 124*, 316–325. [2] vanova, V., Dörnyei, Á, Stefova, M., Stafilov, T., Vojnoski, B., Kilár, B., Márk L. (2011b). Rapid MALDI-TOF-MS Detection o anthocyanins in wine and grape using different matrices. Food Analytical Methods 4, 108–115

Financial support by the scientific project titled "Polyphenolic and aroma profile of Vranec wines fermented with isolated yeasts from Tikves wine area" supported by the Fond of scientific work of the University "Goce Delcev" – Stip is gratefully acknowledged.

This work was financially supported by the ERASMUS Mundus Action 2 Project covering the study stay of Violeta Ivanova-Petropulos at the University of Bologna, Italy.

XXIII Congress of Chemists and Technologists of Macedonia, Ohrid, 8-11 October, 2014