PROCEEDINGS
XX CONGRESS OF THE
CARPATHIAN-BALKAN
GEOLOGICAL ASSOCIATION

SEPTEMBER 24-26, 2014
TIRANA, ALBANIA

Editors
Beqiraj A.
Ionescu C.
Christofides G.
Uta A.
Beqiraj Goga E.
Marku S.

Special Issue
Vol 1/2014
Special Sessions

TIRANA 2014
CBGA COUNCIL

President: Arjan Beqiraj (Albania)
Secretary General: Arben Pambuku (Albania)

COUNCILLORS (NATIONAL REPRESENTATIVES)

Albania Arjan Beqiraj
Austria Volker Hoeck
Bosnia and Herzegovina Zehra Salkic
Bulgaria Irena Peycheva
Czechia Lilian Svabeicka
FYROM Blazo Boev
Greece Georgios Christofides
Hungary Geza Csaszar
Montenegro Slobo Radusinovc
Poland Alfred Uehman
Romania Corina Ionescu
Serbia Ljupko Rundić
Slovakia Milan Kohut
Slovenia Mirka Trajanova
Ukraine Myroslav Pavlyuk

CBGA BOARDER

Arjan Beqiraj (Albania)
Arben Pambuku (Albania)
Georgios Christofides (Greece)
ORGANIZING COMMITTEES

Arjan Beqiraj, President of CBGA

Vice President
Viktor Doda, Director of Geological Survey of Albania

Secretary General
Arben Pambuku, Secretary of CBGA

Executive Secretary
Andreea Uta

Treasurer
Olgert Jaupa

MEMBERS

Jorgaq Kaçani – Rector of Polytechnic University of Tirana
Perparim Hoxha – Dean of Faculty of Geology and Mining
Salvatore Bushati – Academy of Science of Albania

Adil Neziraj Gjovalin Leka
Alexandros Chatzipetros Lavdie Moisiu
Altin Karriqi Lejla Hadziç
Bardhyl Muceku Mirka Trajanova
Blerta Serjani Ontion Fociro
Enkeleida Goga Beqiraj Shkelqim Daja
Enton Bedini Flora Progni
 Sokol Marku

INTERNATIONAL SCIENTIFIC COMMITTEE

Afat Serjani Kristaq Muska
Agim Sinojmeri Ladislav Palinkas
Aleksander Çina Llambro Duni
Alfred Frasheri Maryse Ohnenstetter
Alfred Uchman Meni Prela
Andreas Luttge Milan Kohut
Artan Tashko Milan Sudar
Corina Ionescu Minella Shallo
Dritan Siliqi Nikolla Konomi
Eleni Gjani Perparim Ahikaj
Emilio Saccani Resmi Kamberaj
Engjell Prejzani Romeo Eftimi
Friedrich Koller Ryszard Kryza
Georgios Christofides Selam Meco
Géza Császár Vangjel Melo
Ibrahim Milushi Vilson Sillo
Ilir Alliu Volker Hoeck
Kadri Gjata Yotzo Yanev

FIELD TRIP SUBCOMMITTEE

Avni Mesi Irakli Priphi
Cerçis Durmishi Kujtim Onuzi
 Shaqir Nazaj
REVIEWERS

Alikaj P., Albania
Alliu I., Albania
Balica C., Romania
Balintoni I., Romania
Beqiraj A., Albania
Bonev N., Bulgaria
Cavazza W., Italy
Chatzipetros A., Greece
Christaras B., Greece
Codrea V., Romania
Csaszar G., Hungary
Cvetković V., Serbia
Downes H., Great Britain
Duni Ll., Albania
Eftimi R., Albania
Goga Beqiraj E., Albania
Hocek V., Austria
Hoxha P., Albania
Ionescu C. Romania
Kamberaj R., Australia
Kohut M., Slovakia
Korini Th., Albania
Koukouvelas I., Greece
Kryza R., Polonia
Kürçer A., Turkey
Marton L., Serbia
Mazzoli S., Italy
Michálik J., Slovakia
Milushi I., Albania
Muceku B., Albania
Muceku Y., Albania
Nemeth K., New Zealand
Neziraj A., Albania
Ntaflos Th., Austria
Onuzi K., Albania
Papanikolaou D., Greece
Pecsokay Z., Hungary
Plissart G., France
Příkryl R., Czech Republic
Reicherter K., Germany
Robert M., Switzerland
Robertson A., Great Britain
Robinson P. T. China
Saccani E., Italy
Seghedì I., Romania
Serjani A., Albania
Shanov S., Bulgaria
Stefan S., Switzerland
Szaniawski R., Polonia
Theodoridou M., Cyprus
Török Á., Hungary
Trifonov V., Romania
Ustaszewski K., Germany
Uta A., Romania
Uta A., Albania
von Quadt A., Switzerland
Wagreich M., Austria
Yang J.S., China
Zattin M., Italy
THE ILOVITSA PORPHYRY Cu-AU DEPOSIT: VEIN SEQUENCE, SULFIDE DEPOSITION AND
FLUID INCLUSION STUDY

Stefanova E¹, Georgiev S¹, Peytcheva I¹, Heinrich C², Von Quadt A², Donkova A³ and Serafimovski T³

¹Geological Institute, BAS, 1113 Sofia, stefanova_e@geology.bas.bg
²Institute of geochemistry and petrology, ETH-Zurich, quadt@erdw.ethz.ch
³Faculty of Natural and Technical Sciences, “Goce Delcev” University-Stip, Macedonia

Abstract

The Ilovitsa porphyry Cu-Au deposit is located 30 km away from the town of Strumitsa, SE FYR Macedonia. It is hosted in a Triassic granite (251.90 ±0.89 Ma, Georgiev et al. 2013). The latter intrudes into the metamorphic rocks of the Vertiscos-Ograzhden Unit of the Serbo-Macedonian massif. Formation of the Ilovitsa deposit is related to the intrusion of multiple Tertiary porphyry intrusions (called the Ilovitsa Stock) and dykes. The Ilovitsa stock that hosts the Cu-Au mineralization is made up by two main intrusions with a similar granodioritic composition dated by ID-TIMS at 30.31 ±0.05 Ma and 30.13±0.03 Ma (Georgiev et al. 2013). The authors have determined that the ages of the dykes are between 28.8 and 29.6 Ma.

The main goal of the present study is to distinguish the relative timing of different vein types, vein minerals and related hydrothermal alteration. In addition, we determined the temperature conditions of their formation based on a fluid inclusion study where appropriate fluid inclusion assemblages were found. For that purpose 7 drill holes were sampled and around 80 samples were collected for laboratory analyses. Cross-cutting relationships were used to distinguish the relative timing of vein formation. SEM-CL petrography was then used for identification and textural correlation between successive quartz types, sulfides and fluid inclusion assemblages. Representative fluid inclusion assemblages were selected for further analyses by microthermometry. Hydrothermal veins were named according to their mineral assemblages and quartz textures. All analyses were performed at ETH Zurich.

We have distinguished several successive vein types: Magnetite or quartz-magnetite veinlets are up to few cm thick with potassic alteration. Quartz, where present, is granular with a homogeneous CL-gray luminosity. Barren quartz veins are divided into two subtypes: granular and crystalline quartz veins. Granular quartz veinlets are thin, with irregular walls and are related to potassic alteration. The quartz grains are anhedral with CL-dark luminescence. Crystalline quartz veins are composed of subhedral to euhedral quartz crystals that have oscillatory zoning ranging in luminosity from CL-gray to CL-bright. Data from microthermometry of brine inclusions show that they were formed at temperature higher than 600 °C. Generally, these veins were reopened and filled with minerals from later mineral assemblages in the central parts. Magnetite-bornite-chalcopyrite veinlets are rare in Ilovitsa. Pyrite-chalcopyrite±hematite form thin veinlets cutting the earlier vein types. Inclusions of gold in chalcopyrite are observed. These veins typically contain only minor amounts of CL-dark luminescent quartz. Fluid inclusions suitable for microthermometry undoubtedly connected to the formation of this quartz were not found that is why we could not constrain the temperature of formation of these veins. Quartz-molybdenite veins commonly contain open spaces lined by euhedral quartz crystals with oscillatory zoning. Generally, symmetric lines of molybdenite flakes, growing adjacent to the vein walls, are observed. Based on microthermometry of brine inclusions, we determined that these veins are high temperature (T > 600°C). Quartz-pyrite veins with sericitic alteration cut all of the above described veins. These veins contain only small amounts of CL-dark luminescent quartz and pyrite. Microthermometry data of two-phase fluid inclusions showed that they were formed at a temperature around 290°C. Quartz-galena-sphalerite±pyrite, chalcopyrite veins are widely distributed in Ilovitsa. Quartz forms idiomorphic crystals with oscillatory zoning. Microthermometry data of two-phase fluid inclusions trapped in sphalerite crystals show temperatures between 300 °C and 270 °C. Quartz-carbonate veins were formed during a post-ore stage. Carbonates are found in thin veinlets as well as in veins of earlier formed veins.

Acknowledgements: The study is supported by SCOPES-Project No. IZ73Z0 128089 and the NSF D002-76/2008. Support by geologists of Euromax Resources Ltd is gratefully acknowledged.