

14th International Symposium and Summer School on Bioanalysis

Book of Abstracts

Bratislava – Smolenice 28 June – 6 July 2014

Organizers

Slovak Chemical Society Slovak Vacuum Society in cooperation with

Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava

Organizing Committee

Andrea Staňová Róbert Bodor Radoslav Halko Marián Masár

Symposium Secretariat

14th ISSSB
Department of Analytical Chemistry
Faculty of Natural Sciences
Comenius University in Bratislava
Mlynská dolina CH-2
SK-84215 Bratislava
Slovakia

E-mail: 14isssb@gmail.com Phone: +421 2 602 96 379 Fax.: +421 2 602 96 706

http://www.analytika.sk/summerschool2014/summerschool2014.html

Editors

Marián Masár Róbert Bodor Andrea Staňová Radoslav Halko

Publisher

Slovak Vacuum Society, Ilkovičova 3, Bratislava, Slovakia, 2014

The professional and the grammatical quality of the abstracts is the author's responsibility. Contributions have been editorially modified. Text has not undergone proofreading.

ISBN 978-80-971179-3-1

Sponsors

The Organizing Committee gratefully acknowledges financial support of the following companies

www.labo.sk

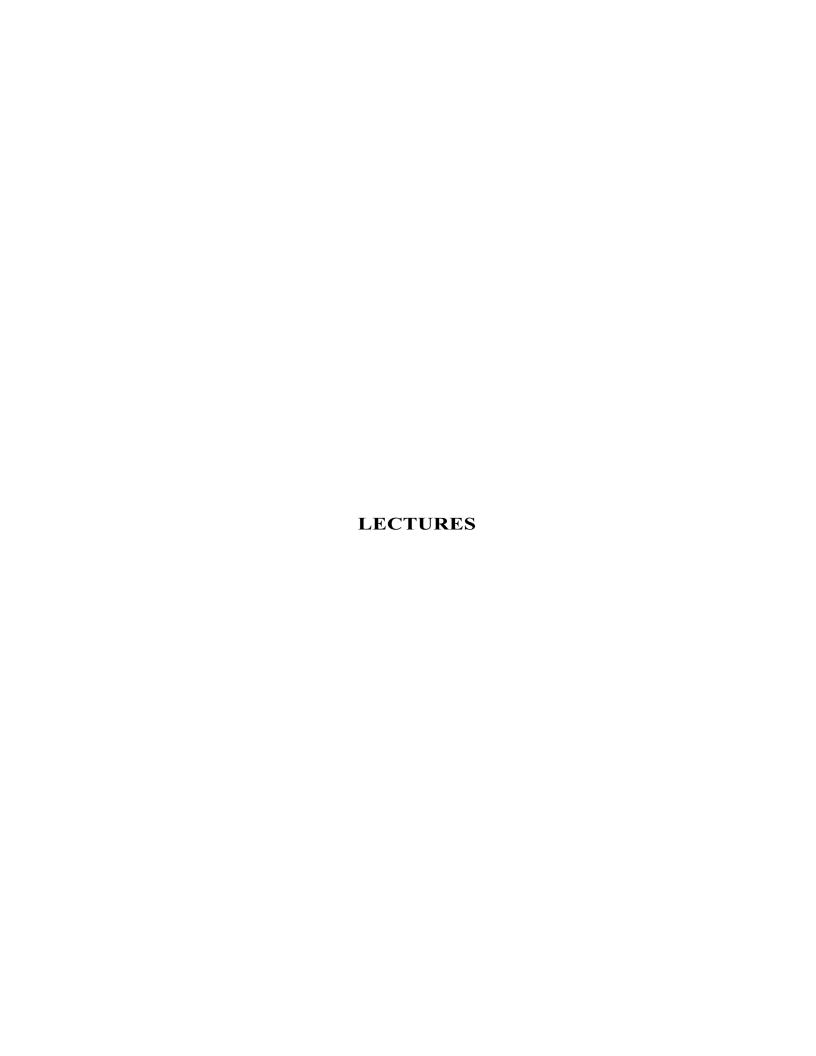
www.pragolab.eu

www.villalabeco.sk

www.benzinol-slovakia.sk

www.hameln-rds.com

Foreword


It is our great pleasure to welcome you to the 14th International Symposium and Summer School on Bioanalysis (14th ISSSB) that will be mainly held at the SAS Congress Centre Smolenice between 28th of June and 6th of July 2014.

The event is organized in the frame of CEEPUS CIII-RO-0010-08-1314 network. The 14th ISSSB provides an overview of a broad range of interdisciplinary subjects in bioanalysis. Its main purpose is to offer an opportunity for young researchers to learn more about the current progress in the analytical techniques.

The symposium focuses on the application of bioanalytical methods in chemical and pharmaceutical research, and related topics. The scientific program will include oral lectures and poster presentations as well as practical courses on bioanalysis.

Bratislava, June 2014

Marián Masár Symposium chair

L18

Influence of Vinification Practices on the Elements Concentration in Vranec wines studied by ICP-OES

<u>Violeta Ivanova-Petropulos^{1*}</u>, Katerina Bačeva², Elena Bogeva³, Goran Milanov⁴, Trajče Stafilov²

¹Faculty of Agriculture, University "Goce Delčev", Krste Misirkov bb, 2000 Štip, Republic of Macedonia

²Institute of Chemistry, Faculty of Natural Sciences and Mathematics, University "Ss. Cyril and Methodius", Arhimedova 5, 1000 Skopje, Republic of Macedonia

³Elenov Winery, 1422 Demira Kapija, Republic of Macedonia

⁴Institute of Agriculture, University "Ss. Cyril and Methodius", bul. Aleksandar Makedonski bb, 1000 Skopje, Republic of Macedonia

*e-mail: violeta.ivanova@ugd.edu.mk

The presence of metals (i.e. Al, Zn, Cu, Fe, Pb) in wine is important for efficient alcoholic fermentation and for its sensorial characteristics (flavor, aroma, freshness). Certain metal ions, such as Fe, Cu and Mn participate in destabilization of wine and in their oxidative evolution, whereas Cu, Fe, Al, Zn and Ni contribute to haze formation and undesirable changes of aroma and taste. The element composition of the wines may be influenced by many factors such as elemental levels in the soil, fertilization practices, wine processing equipment and vinification [1,2].

In this study, Vranec wines produced with different maceration times (4, 7, 14 and 30 days) in presence of enzyme and oak chips during fermentation were studied in order to determine the influence of vinification conditions on the elements concentration. Analysis was performed with inductively coupled plasma – optical emission spectrometry (ICP-OES) for accurate determination of the concentration of 18 elements (Al, Ba, Bi, Ca, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, S, Sr, V, Zn). The results demonstrate that Mg and P increased during maceration, while the other elements content was not affected by the maceration time duration. Wines macerated for 7, 14 and 40 days, fermented in presence of oak chips showed highest content of Al, Ba, Fe, K, Mn, and P. The Student–Newman–Keuls test was applied to ascertain possible significant differences between the studied wines, and factor analysis was employed showing separation of the wines mainly according to the oak chips treatment.

References

- [1] Ivanova-Petropulos, V., Wiltsche, H., Stafilov, T., Stefova, M., Motter, H., Lankmayr, E., *Maced. J. Chem. Chem. En.* **32**(2) (2013) 265-281.
- [2] Stafilov, T., Karadjova, I., Int. J. Pure. Appl. Chem., 1(2) (2006) 273-305.

14th Symposium and Summer School on Bioanalysis, Bratislava, Smolenice, June, 2014

INFLUENCE OF VINIFICATION PRACTICES ON THE ELEMENTS CONCENTRATION IN VRANEC WINES STUDIED BY ICP-OES

Violeta Ivanova-Petropulos

Faculty of Agriculture, University "Goce Delčev" - Štip, Rupublic of Macedonia

Aim of the work

1. To analyse the elemental composition of Vranec wines

2. To study the influence of vinification conditions on the elements concentration

- Applying ICP-OES for analyses

EXPERIMENTAL

Wine samples

12 wine samples from Vranec variety

➤ Different maceration time:

4, 7, 14 and 30 days

>Application of:

- Enzume
- Oak chips

ICP-OES analysis

Instrumental techniques for elements 15

analysis

ICP-OES analysis

ICP-OES-Varian 715-ES

- wines were directly injected
- ➤ Varian 715-ES with CETAC USNebulizer 5000+

EXPERIMENTAL

Instrumentation and operating conditions for the ICP-OES (Varian, 715-ES) system

RF generator										
Operating freq	uency	40.68 MHz free-running, air-cooled RF								
		generator								
Power output of RF	generator	700–1700 W in 50 W increments								
Power output st	ability	Better tha	an 0.1 %							
Introduction area										
Sample nebul	izer	V-gro	oove							
Spray chaml	ber	Double-pas	ss cyclone							
Peristaltic pu	ımp	0-50	rpm							
Plasma configu	ration	Radially	viewed							
	Spect	rometer								
Optical arrange	ement	Echelle opti	cal design							
Polychroma	tor	400 mm fo cal length								
Echelle grati	ing	94.74 lines/mm								
Polychromator	purge	0.5 l min ⁻¹								
Megapixel CCD d	etector	1.12 million pixels								
Wavelength cov	erage	177 nm to 785 nm								
	Conditions	s for program								
RFG power	1.0 kW	Pump speed	25 rpm							
Plasma Ar flow rate	15 l min ⁻¹	Stabilization time	30 s							
Auxiliary Ar flow rate	1.5 l min ⁻¹	Rinse time	30 s							
Nebulizer Ar flow rate	0.75 l min ⁻¹	Sample delay	30 s							
Background correction	Fitted	Number of replicates	3							

RESULTS AND DISCUSSION

- 18 elements quantified in Vranec wines

Al, Ba, Bi, Ca, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, S, Sr, V and Zn

Elements	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Li
LOD												
μg/L	0.25	10	0.5	1	0.5	0.1	1	1	0.25	0.12	100	1

Elements	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sr	Tl	V	Zn
LOD												
μg/L	0.5	0.03	4	50	5	10	10	50	0.5	10	1	0.06