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Abstract

We propose the NaSHA-(m, k, r) family of cryptographic hash func-
tions, based on quasigroup transformations. We use huge quasigroups
defined by extended Feistel networks from small bijections and a novel
design principle: the quasigroup used in every iteration of the compres-
sion function is different and depends on the processed message block.
We present in all details of the implementations of NaSHA-(m, 2, 6)
where m ∈ {224, 256, 384, 512}.

1 Introduction

In this part we give the algorithm specification of our NaSHA hash
function, consisting of 5 sections: 2. Mathematical background, 3.
The NaSHA-(m, k, r) hash algorithm, 4. Implementation of NaSHA-
(m, 2, 6) hash functions for m ∈ {224, 256, 384, 512}, 5. Design ratio-
nale and 6. Preliminary security analysis.

2 Mathematical background

2.1 Quasigroups

A quasigroup (Q, ∗) is a groupoid, i.e., a set Q with a binary operation
∗, such that the equations a∗x = b and y ∗a = b have unique solutions
x and y in Q for each given a, b ∈ Q. Note that when Q is finite
then the main body of the multiplication table of (Q, ∗) is a Latin
square, i.e., the rows and the columns are permutations of Q. Given
a quasigroup (Q, ∗), two adjoint operations / and \ can be defined by
x/y = z ⇐⇒ x = z ∗ y and x\y = z ⇐⇒ x ∗ z = y. Then the groupoids
(Q, /) and (Q, \) are quasigroups too.

By a quasigroup of a good cryptographic quality we mean a finite
quasigroup that is non-commutative, non-associative, non-idempotent,
without right or left units and without a proper sub-quasigroups. That
quasigroup (Q, ∗) should not be linear, in the sense that no output bit
of a ∗ b is a linear combination of the input bits of a and b, for each
a, b ∈ Q. Also, the quasigroup should not satisfy identities of the kinds
x(... ∗ (x︸ ︷︷ ︸

l

∗y)) = y and y = ((y ∗ x) ∗ ...) ∗ x︸ ︷︷ ︸
l

for some l < 2n, where n is
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the order of the quasigroup.

2.2 Quasigroup transformation used in NaSHA

For NaSHA hash family we use the following quasigroup transforma-
tions.

Definition 1 (Quasigroup additive string transformation Al :
Qt → Qt with leader l) Let t be a positive integer, let (Q, ∗) be a
quasigroup, Q = Z2n, and l, xj, zj ∈ Q. The transformation Al is
defined by

Al(x1, . . . , xt) = (z1, . . . , zt) ⇔ zj =

{
(l + x1) ∗ x1, j = 1
(zj−1 + xj) ∗ xj, 2 ≤ j ≤ t

(1)
where + is addition modulo 2n. The element l is said to be a leader of
A.

Definition 2 (Quasigroup reverse additive string transforma-
tion RAl : Qt → Qt with leader l) Let t be a positive integer, let
(Q, ∗) be a quasigroup, Q = Z2n, and l, xj, zj ∈ Q. The transformation
RAl is defined by

RAl(x1, . . . , xt) = (z1, . . . , zt) ⇔ zj =

{
xj ∗ (xj + zj+1), 1 ≤ j ≤ t− 1
xt ∗ (xt + l), j = t

(2)
where + is addition modulo 2n. The element l is said to be a leader of
RA.

For an element z ∈ Z2n denote by ρ(z, bn
2
c) the element in Z2n

obtained by rotating left for bn
2
c bits the n-bit representation of z.

Given a string Z = (z1, . . . , zt) ∈ (Z2n)t, we denote by ρ(Z) the string

ρ(Z) =
(
ρ(z1, bn

2
c), . . . , ρ(zt, bn

2
c)) ∈ (Z2n)t.

For a function f = f(Z) we define a new function ρ(f) = ρ(f)(Z) by
ρ(f)(Z) = f(ρ(Z)).

3



Definition 3 (Quasigroup main transformation MT : Qt → Qt)
Let Q = Z2n and let t and k be positive integers, where k is even. (k
is called the complexity of MT .) The transformation MT is defined
as composition of transformations of kind Ali followed by ρ(RAlj), for
suitable choices of the leaders li and lj as functions depending on vari-
ables x1, x2, . . . , xt, as follows. For every xλ ∈ Q

MT (x1, . . . , xt) = ρ(RAl1)(Al2(. . . (ρ(RAlk−1
)(Alk(x1, . . . , xt))) . . . )),

(3)
i.e., MT = ρ(RAl1) ◦ Al2 ◦ · · · ◦ ρ(RAlk−1

) ◦ Alk , where ◦ denotes a
composition of functions.

2.3 Left and right quasigroups

A groupoid (G, ·) is said to be a left (a right) quasigroup if the equation
xa = b (ay = b) have a unique solution x (y) in G for every a, b ∈ G.

Proposition 1 Let (G, +) be a group and let (G, ∗) be a quasigroup.
Then the operation • defined by x • y = (x + y) ∗ y defines a left
quasigroup (G, •).
Proof The solution x = (b/a)− a of the equation x • a = b is unique,
since x • y = x′ • y =⇒ x = x′. ¤

Proposition 2 Let (G, +) be a group and let (G, ∗) be a quasigroup.
Then the operation ¦ defined by x ¦ y = x ∗ (x + y) defines a right
quasigroup (G, ¦).
Proof The solution y = −a+(a\b) of the equation a¦y = b is unique,
since x ¦ y = x ¦ y′ =⇒ y = y′. ¤

Given a groupoid (G, ·), for each a ∈ G the left and the right transla-
tions La and Ra are defined by La(x) = xa and Ra(x) = ax respectfully.
If (G, ·) is a left (right) quasigroup then its left (right) translation is
a permutation, while the right (left) translation can be arbitrary map-
ping.

Considering the left and the right quasigroups defined as in Propo-
sition 1 and Proposition 2, the situation is quite different in the case
when G = Z2n and the group operation is addition modulo 2n. Namely,
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the right translation of (G, •) and the left translation of (G, ¦) may not
be permutations in that case either. However, the probability of that
event is quite small, roughly speaking, around 2/|G|. To show the last
statement we consider the problem of finding solutions of the equation
x ¦ a = b, i.e.,

x ∗ (x + a) = b (4)

where a, b ∈ G are given, and x is unknown.

Proposition 3 Let G = Z2n be with group operation addition modulo
2n. Let a quasigroup operation ∗ on G be chosen randomly. Then the
probability the right quasigroup (G, ¦) to have two different solutions

x1 6= x2 of the equation (4) is less or equal to
2

2n − 1
.

Proof Let x1 and x2 be two different solutions of the equation x∗ (x+
a) = b. Then

{
x1 ∗ (x1 + a) = b
x2 ∗ (x2 + a) = b

⇒
{

x1 \ b− x1 = a
x2 \ b− x2 = a

⇒ x1\b−x2\b = x1−x2 6= 0.

At first, we find the probability a random quasigroup to satisfy the
event x1 \ b− x2 \ b = x1 − x2 6= 0.

The difference x1 − x2 can take any value r ∈ G, where r 6= 0.
Fix an r 6= 0. Then there are

(
2n

2

)
pairs of different elements of G, and

exactly 2n of them satisfy the equation x1−x2 = r. Hence, we have this
probability for any fixed r 6= 0 : Pr{x1, x2 ∈ G, x1 − x2 = r} = 2

2n−1
.

Consider now the equation x1\b − x2\b = s, where s 6= 0 ∈ G is
given. Denote by K the set of all quasigroups on G and let fix a solution
(x1, x2) of x1\b − x2\b = s. Denote by Ks = Ks(x1, x2) the set of all
quasigroups on G with the property x1\b−x2\b = s. Then |Ks| = |Kt|
for each s and t. Namely, if (G, \1) ∈ Ks, then we can construct a
quasigroup (G, \2) ∈ Kt as follows. At first choose x1\2b and x2\2b
such that x1\2b−x2\2b = t and let π be the permutation generated by
the two transpositions (x1\1b, x1\2b), (x2\1b, x2\2b). Then define the
operation \2 for each u, v ∈ G by u\2v = π(u\1v). (Note that we have
obtained (G, \2) from (G, \1) in such a way that we have only replaced
in the multiplication table of (G, \1) all appearances of x1\1b (x2\1b)
by x1\2b (x2\2b).) Now, for given x1, x2 ∈ G and randomly chosen
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quasigroup (Q, \), we have the probability Ps{Q ∈ K,x1\b − x2\b =

s is true in Q} = |Ks|
|K| = 1

2n−1
.

Consequently, the probability a random quasigroup (G, ∗) to satisfy
the event x1 \ b− x2 \ b = x1 − x2 6= 0 is

P{x1 − x2 = r, x1\b− x2\b = r, r > 0} =

q−1∑
r=1

P{x1 − x2 = r, x1\b− x2\b = r} =

2n−1∑
r=1

P{x1\b− x2\b = r| x1 − x2 = r}P{x1 − x2 = r} =

2n−1∑
r=1

Ps{Q ∈ K, x1\b− x2\b = r}Pr{x1, x2 ∈ G, x1 − x2 = r} =
2

2n − 1
.

Finally, if we additionally take the condition x1\b − x1 = a, we
conclude that the probability a right quasigroup (G, ¦) to have two
different solutions x1 6= x2 of the equation (4) is less or equal to 2

2n−1
.
¤

In similar way one can prove the same property for left quasigroup
(G, •).
Proposition 4 Let G = Z2n be with group operation addition modulo
2n. Let a quasigroup operation ∗ on G be chosen randomly. Then
the probability the left quasigroup (G, •) to have two different solutions
x1 6= x2 of the equation

(a + x) ∗ x = b (5)

is less or equal to
2

2n − 1
. ¤

Remark 1 In the set of all 576 quasigroups of order 4, each equation
of kind x ∗ (x + a) = b (or (a + x) ∗ x = b) has two (or more) solutions
in exactly 168 quasigroups.

2.4 The main transformation MT as a one-way function

Next we show that the transformation MT : Qt → Qt can be consid-
ered as a one-way function when Q = Z2n is enough big.
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Let us take k = 2 for simplicity, and let a quasigroup (Q, ∗), leaders
l1, l2 and elements c1, c2, . . . , ct ∈ Q be given. Suppose that for some un-
known x1, x2, . . . , xt ∈ Q we have (c1, c2, . . . , ct) = MT (x1, x2, . . . , xt)
= ρ(RAl1)(Al2(x1, x2, . . . , xt)). Then there are unknown y1, y2, . . . , yt ∈
Q such that

Al2(x1, x2, . . . , xt) = (y1, y2, . . . , yt) (6)

and

RAl1(ρ(y1, bn
2
c), ρ(y2, bn

2
c), . . . , ρ(yt, bn

2
c)) = (c1, c2, . . . , ct). (7)

From the equations (6) and (7) we obtain the following system of
2t equations with 2t unknowns.





(l2 + x1) ∗ x1 = y1

(y1 + x2) ∗ x2 = y2

. . .
(yt−1 + xt) ∗ xt = yt

(8)





ρ(yt, bn
2
c) ∗ (ρ(yt, bn

2
c) + l1) = ct

ρ(yt−1, bn
2
c) ∗ ρ((yt−1, bn

2
c) + ct) = ct−1

. . .
ρ(y1, bn

2
c) ∗ (ρ(y1, bn

2
c) + c2) = c1.

(9)

The subsystem (9) consists of t equations with t unknowns of kind
y ∗ (y + a) = b. As much as we know, there is no explicit formula to
find the unknown y, so one has to check for each y ∈ Q if the equation
y ∗ (y + a) = b is satisfied. By Proposition 4 one has to make, roughly,
2n − 1/2n ≈ 2n checks, i.e., a solution can be found after 2n−1 checks
on average. In the same way, by checking, solutions x1, x2, . . . , xt can
be found. Altogether, for finding a solution of the system consisting of
(8) and (9) one has to make, on average, 2t2n−1 = 2nt checks. Thus,
we have the following properties.

Proposition 5 The system of equations (8) and (9) can be solved
after 2nt checks on average. ¤

Proposition 6 If Q is sufficiently large and (Q, ∗) is an arbitrary
quasigroup, chosen uniformly at random, the problem of finding a preim-
age of the transformation MT is computationally infeasible. ¤
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2.5 Definition of quasigroups by extended
Feistel networks

The algorithms for computing the NaSHA− (m, 2, 6) hash functions,
for m ∈ {224, 256, 384, 512}, use quasigroups of order 264 and in the
sequel we give an effective construction of quasigroups of such a big
order. For that aim we use the extended Feistel network defined in [15]
as a generalization of the Feistel network [8]. The complete proofs of
all statements given in this subsection can be found in [15] as well.

Let (G, +) be an Abelian group, let f : G → G be a mapping and
let a, b, c ∈ G be fixed elements. The extended Feistel network
Fa,b,c : G2 → G2 created by f is defined for every l, r ∈ G by

Fa,b,c(l, r) = (r + a, l + b + f(r + c)).

The extended Feistel network Fa,b,c is a bijection with inverse

F−1
a,b,c(l, r) = (r − b− f(l + c− a), l − a).

An extended Feistel network became a Feistel network when a = b =
c = 0.

A complete mapping of a group (G, +) is a bijection θ : G → G
such that the mapping φ : G → G defined by φ(x) = −x+θ(x) is again
a bijection of G.

Theorem 1 Let (G, +) be an Abelian group and a, b, c ∈ G. If Fa,b,c :
G2 → G2 is an extended Feistel network created by a bijection f : G →
G, then Fa,b,c is a complete mapping of the group (G2, +). ¤

Sade [18] proposed the following method for creating a quasigroup
from a group with a complete mapping :

Proposition 7 Let (G, +) be a group with complete mapping θ. Define
an operation ∗ on G by:

x ∗ y = θ(x− y) + y (10)

where x, y ∈ G. Then (G, ∗) is a quasigroup derived by θ. ¤
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Proposition 7 and Theorem 1 allow us to construct iteratively quasi-
groups on the sets {0, 1}2n

as follows.

Take a bijection f : {0, 1}2t → {0, 1}2t
, where t < n is a small

positive integer (t = 1, . . . , 8). Denote by Gi = ({0, 1}2t+i
,⊕2t+i), i =

1, 2, 3, . . . , the groups with carrier {0, 1}2t+i
and bitwise XOR operation

⊕2t+i . Choose constants a(i), b(i), c(i) ∈ {0, 1}2t+i
, 1 ≤ i ≤ n−t, and con-

struct iteratively the complete mappings F1, F2, F3, . . . on the groups
G1, G2, G3, . . . respectively in the following way. F1 = Fa(1),b(1),c(1) is
the extended Feistel network created by f , and Fi+1 = Fa(i+1),b(i+1),c(i+1)

is the extended Feistel network created by Fi, i = 1, 2, . . . , n − t − 1.
Finally, define a quasigroup operation ∗ on {0, 1}2n

by (10), derived by
the complete mapping Fn−t. So,

x ∗ y = Fa(n−t),b(n−t),c(n−t)(x⊕2n y)⊕2n y

for every x, y ∈ {0, 1}2n
.

Note that we need only n−t iterations for getting the complete map-
ping Fn−t on the group ({0, 1}2n

,⊕2n) and a small amount of memory
for storing the bijection f . Hence, the complexity of our algorithm for
construction of quasigroups of order 22n

is O(n).

The algebraic degree of a transformation g of the set {0, 1}n is de-
fined to be equal to the maximal degree of the polynomials in the vec-
tor valued Boolean function presentation of g. Namely, g : {0, 1}n →
{0, 1}n can be presented by g(b1, b2, . . . , bn) = (g1(b1, b2, . . . , bn), . . .
. . . , gn(b1, b2, . . . , bn)), where gi(b1, b2, . . . , bn) : {0, 1}n → {0, 1} are
Boolean functions. The algebraic normal forms of gi can be consid-
ered as multivariate polynomials on GF (2), and the degree of gi is
defined to be the degree of the corresponding polynomial.

Proposition 8 The algebraic degree of the extended Feistel network
Fa,b,c created by a mapping f is equal to the algebraic degree of f . ¤

The cryptographic qualities of the quasigroups (Q, ∗) obtained by
extended Feistel networks as above depend on the starting bijections
f and on the constants a, b, c that are used for their definitions. Let
(Q, ∗) be a quasigroup derived by a complete mapping Fa,b,c created
by a bijection f on the set Q = {0, 1}2n

. The following proposition is
true.
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Proposition 9 (1) The quasigroup (Q, ∗) is non-idempotent iff f(c) 6=
b or a 6= 02n (where 02n denotes the word consisting of zeros only).

(2) The quasigroup (Q, ∗) does not have neither left nor right unit.

(3) The quasigroup (Q, ∗) is non-commutative and, much more, no
different elements of Q commutes.

(4) Let φ(x) = Fa,b,c(x) ⊕2n x. If a 6= 02n, or f(c) 6= b, or φ ◦
Fa,b,c(x) 6= Fa,b,c ◦ φ(x) for some x 6= 02n ∈ Q, then the quasigroup
(Q, ∗) is non-associative.

(5) The identity y = ((y∗x) ∗ . . . ) ∗ x︸ ︷︷ ︸
l

holds true in (Q, ∗) iff F l
a,b,c =

I, where I is the identity mapping.

(6) The identity x ∗ (· · · ∗ (x︸ ︷︷ ︸
l

∗y)) = y holds true in (Q, ∗) iff (I ⊕2k

Fa,b,c)
l = I.

(7) < 0 >=< {F i
a,b,c(0)| i = 1, 2, . . . } >, where < A > denotes the

subquasigroup generated by the subset A of Q. ¤

2.6 Linear transformation

The algorithm of NaSHA hash functions uses also the linear transfor-
mations explained as below.

Denote by LinTr512 and by LinTr256 the transformations of the
sets {0, 1}2028 and {0, 1}1024 respectively, defined by

LinTr512(S1||S2|| . . . ||S31||S32) = (S7⊕S15⊕S25⊕S32)||S1||S2|| . . . ||S31,

LinTr256(S1||S2|| . . . ||S15||S16) = (S4⊕S7⊕S10⊕S16)||S1||S2|| . . . ||S15,

where Si are 64-bits words, ⊕ denotes the operation XOR on 64-bits
words, and the operation || denotes the concatenation of words.

Note that LinTr512 is in fact the LFSR obtained from the primitive
polynomial x32 +x25 +x15 +x7 +1 over the Galois field GF(2), applied
in parallel 64 times, while LinTr256 is obtained in the same way from
the primitive polynomial x16 + x10 + x7 + x4 + 1. As a consequence we
have the following.
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Proposition 10 LinTr512 is a permutation of the set {0, 1}2028 and
LinTr256 is a permutation of the set {0, 1}1024. ¤

3 The NaSHA-(m, k, r) hash algorithm

We define a family of hash functions NaSHA-(m, k, r) by using the
transformations LinTr2s and MT as it is explained by the algorithm
that follows. The parameters m, k and r denote the length of the
output hash result (the message digest), the complexity of MT and
the order 22r

of used quasigroup respectively, so k is a positive even
integer and m and r are positive integers.

NaSHA-(m, k, r) hash algorithm

Input A positive even integer k and positive integers m and r such
that m > 2r, and an input message M .

Output A hash value (message digest) NaSHA-(m, k, r)(M) of m
bits.

Step 1 Denote by n the smallest integer such that m ≤ 2n. (For
example, n=8 for m=224 and n=9 for m=384.)

Step 2 Pad the message M, so that the length of the padded message
M ′ is a multiple of 2n+1, |M ′| = 2n+1N for some N . Separate M ′ in
N 2n+1-bit blocks, M ′ = M1||M2|| . . . ||MN , |Mi| = 2n+1.

Step 3 Initialize the initial value H0, which is a 2n+1-bit word.

Step 4 The first message block M1 and the initial value H0 separate
to q = 2n−r+1 2r-bits words:

M1 = S1||S3||S5|| . . . ||S2q−3||S2q−1||, H0 = S2||S4||S6|| . . . ||S2q−2||S2q||,
(|Si| = 2r) and form the word

S(0) = S1||S2||S3||S4|| . . . ||S2q−3||S2q−2||S2q−1||S2q.

Step 5 Choose leaders li as functions that depend on S1, S2, S3, . . . , S2q,
a quasigroup ({0, 1}2r

, ∗) and a suitable linear transformation LinTr2n+2.

Step 6 Compute the string of bits S(N−1) as follows.
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FOR i = 1 TO N − 1 DO

A1||A2||A3|| . . . ||A2q ←MT (LinTr2q
2n+2(S(i−1))),

B1||B2||B3|| . . . ||Bq−1||Bq ← Mi+1,

S(i) := B1||A2||B2||A4|| . . . ||Bq−1||A2q−2||Bq||A2q,

NEXT i

Here, Ai and Bi are 2r-bit variables, and S(i) are 2n+2-bit variables.

Step 7 Compute MT (LinTr2q
2n+2(S(N−1))) := A1||A2||A3|| . . . ||A2q.

Then

NaSHA-(m, k, r)(M) = A4||A8|| . . . ||A2q−4||A2q (mod 2m).

We emphasize that some steps (e.g., Step 5) need more detailed
elaborations in concrete implementations.

The NaSHA-(m, k, r) hash algorithm allows each bit of an input
message M to influence almost all bits of the resulting hash value. To
verify this let represent S(i) as

S(i) = S
(i)
1 ||S(i)

2 ||S(i)
3 || . . . ||S(i)

2q−2||S(i)
2q−1||S(i)

2q .

We have that every bit from the bit string S(i) influences all blocks

S
(i+1)
j with even subindexes (j = 2, 4, 6, . . . , 2q) of the bit string S(i+1).

Namely, by Step 6 we apply the transformations LinTr2q
2n+2 and MT

on S(i). The linear transformation besides diffusion spread out the
influence of bits. The MT transformation is composition of Al and

ρ(RAl) transformations. Now, if b is a bit from a block S
(i)
j of S(i),

then all blocks of Al(S
(i)) from the j + 1-th until 2q-th are influenced

by b. After that, all blocks of MT (Al(S
(i))) will be influenced by b.

So we have the following theorem.

Theorem 2 Every bit from the input message M influences all blocks
of the hash value NaSHA-(m, k, r)(M).

Proof. By the above considerations we have that each bit of M
influences all blocks with even subindexes of S(N). Since NaSHA-
(m, k, r)(M) = A4||A8|| . . . ||A2q−4||A2q, where A1||A2||A3|| . . . ||A2q =
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(LinTr2q
2n+2(S(N))), all blocks of NaSHA-(m, k, r)(M) are influenced by

each bit of M . ¤

Much more than Theorem 2 is stating, the internal structure of the
quasigroup operation and the addition modulo 2r allows us to conclude
that almost all bits of the hash value are influenced by each bit of the
input message.

4 Implementation of NaSHA-(m, 2, 6) hash func-
tions for m ∈ {224, 256, 384, 512}

Here we give a complete implementation of NaSHA-(m, k, r) algorithm
when k = 2, r = 6 and m ∈ {224, 256, 384, 512}. The used quasigroup
of order 26 = 64 is derived by extended Feistel networks.

4.1 Padding

The padding consists of the standard Merkle-Damg̊ard strengthening
[16]. Denote by M the bit input message of length s = |M | < 2128.

1. Denote by q the smallest nonnegative integer such that

s + q + 1 ≡ 384 (mod 512)

for m = 224 and m = 256, and

s + q + 1 ≡ 896 (mod 1024)

for m = 384 and m = 512.

2. Let 0q denote the binary word consisting of q zeros, and let bs be
the binary presentation of s by 128 bits.

3. Append to the message M the words 1, 0q and bs.

The padding of M is the message M ′ = M ||1||0q||bs and for m = 256
is a multiple of 512 and for m = 512 is a multiple od 1024.

Note that this implementation of NaSHA hash algorithm accept
messages of length up to 2128 − 1 bits.
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f 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 8c 90 d9 c1 46 63 53 f1 61 32 15 3e 26 9a 97 2e
1 d8 a0 99 9e c0 95 67 b7 6d e0 f3 28 20 86 b6 ef
2 4b 31 b5 d2 13 39 6c a5 03 3f 4d 34 f9 ec 8e 17
3 c5 25 3c 89 c9 2b 3a c2 6e c6 aa 91 49 18 93 de
4 0d 6f 65 af 92 a7 f6 a6 40 b9 ed b0 c3 d7 7d 7c
5 54 59 df 2f da a4 05 94 9b 72 01 74 a9 f7 81 e9
6 1f b3 eb cf 8 47 52 36 bc 16 29 76 12 fa 9c 8a
7 5b a8 43 d1 79 85 42 82 c7 a1 78 4f e2 35 ea ad
8 dc 0e d3 2d 6a 5a 44 ab c8 e5 37 0a 6b 51 e3 14
9 cd 56 4a d6 08 83 bb 33 e1 30 4e 24 5e b4 00 48
a 5f 22 0b 50 3d 80 1a bf cc ff 64 87 1b c4 07 f8
b 0c d4 ac 02 10 84 7e 69 70 60 55 2a 21 57 23 66
c 62 73 cb 41 58 71 77 1c 7b 8f 9f 9d a3 b1 7f 5d
d f4 06 ae d5 e6 3b ba Fe 96 e7 0f 45 2c f0 fc bd
e e4 98 fb ca 11 f5 dd 7a 5c fd ce 88 d0 68 8d 4c
f be 04 38 1d 1e f2 27 19 b2 75 a2 ee db b8 09 8b

Table 1: The starting bijection f = f(m||n)

4.2 Starting bijection

As starting bijection f : Z8
2 → Z8

2 for creating extended Feistel network
we use improved AES S-box with the APA structure from Cui and Cao
[3], given on Table 1 in hexadecimal notation.

4.3 Quasigroup operation via extended Feistel network

From the starting bijection f we define three extended Feistel networks
Fa1,b1,c1 , Fa2,b2,c2 , Fa3,b3,c3 : Z16

2 → Z16
2 by

Fai,bi,ci
(l8||r8) = (r8 ⊕ ai)||(l8 ⊕ bi ⊕ f(r8 ⊕ ci)),

where l8 and r8 are 8-bit variables, and ai, bi, ci are 8-bit words that are
defined before each application of MT , as it is explained in Subsection
4.5. Denote by f ′ the bijection Fa1,b1,c1 ◦ Fa2,b2,c2 ◦ Fa3,b3,c3 : Z16

2 → Z16
2 .

By using the bijection f ′ we define a quasigroup operation on Z64
2

that will be used for the additive string transformation A as follows.
Create the Feistel networks Fα1,β1,γ1 : Z32

2 → Z32
2 and FA1,B1,C1 : Z64

2 →
Z64

2 by

Fα1,β1,γ1(l16||r16) = (r16 ⊕ α1)||(l16 ⊕ β1 ⊕ f ′(r16 ⊕ γ1)),

FA1,B1,C1(l32||r32) = (r32 ⊕ A1)||(l32 ⊕B1 ⊕ Fα1,β1,γ1(r32 ⊕ C1)),
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where l16, r16 are 16-bit variables, α1, β1, γ1 are 16-bit words, l32, r32

are 32-bit variables and A1, B1, C1 are 32-bit words. The constant
words will be defined in Subsection 4.5. The function FA1,B1,C1 is
a complete mapping in the group (Z64

2 ,⊕), and then the operation
∗a1,b1,c1,a2,b2,c2,a3,b3,c3,α1,β1,γ1,A1,B1,C1 defined by

x ∗a1,b1,c1,a2,b2,c2,a3,b3,c3,α1,β1,γ1,A1,B1,C1 y = FA1,B1,C1(x⊕ y)⊕ y

is a quasigroup operation in Z64
2 .

By using the bijection f ′ we define also a quasigroup operation in
Z64

2 that will be used for the reverse additive string transformation
RA as follows. Create the Feistel networks Fα2,β2,γ2 : Z32

2 → Z32
2 and

FA2,B2,C2 : Z64
2 → Z64

2 by

Fα2,β2,γ2(l16||r16) = (r16 ⊕ α2)||(l16 ⊕ β2 ⊕ f ′(r16 ⊕ γ2)),

FA2,B2,C2(l32||r32) = (r32 ⊕ A2)||(l32 ⊕B2 ⊕ Fα2,β2,γ2(r32 ⊕ C2)),

where l16, r16 are 16-bit variables, α2, β2, γ2 are 16-bit words, l32, r32

are 32-bit variables and A2, B2, C2 are 32-bit words. The constant
words will be defined in Subsection 4.5. The function FA2,B2,C2 is
a complete mapping in the group (Z64

2 ,⊕), and then the operation
∗a1,b1,c1,a2,b2,c2,a3,b3,c3,α2,β2,γ2,A2,B2,C2 defined by

x ∗a1,b1,c1,a2,b2,c2,a3,b3,c3,α2,β2,γ2,A2,B2,C2 y = FA2,B2,C2(x⊕ y)⊕ y

is a quasigroup operation in Z64
2 .

In such a way we achieve for each application of MT to use dif-
ferent quasigroup operations ∗a1,b1,c1,a2,b2,c2,a3,b3,c3,α1,β1,γ1,A1,B1,C1 for the
transformation A and ∗a1,b1,c1,a2,b2,c2,a3,b3,c3,α2,β2,γ2,A2,B2,C2 for the trans-
formation RA.

4.4 Chaining initial vectors

The definition of NaSHA-(m, k, r) hash function includes one initial
string H0. The initial strings we are using are the following, represented
in hexadecimal as concatenation of 64-bit chunks. (They were made
accidently by the authors.)

1. m = 224, H0 =
6a09e667f3bcc908, cbbb9d5dc1059ed8, bb67ae8584caa73b, 629a292a367cd507,
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3c6ef372fe94f82b, 9159015a3070dd17, a54ff53a5f1d36f1, 152fecd8f70e5939

2. m = 256, H0 =
510e527fade682d1, 67332667ffc00b31, 9b05688c2b3e6c1f, 8eb44a8768581511,
1f83d9abfb41bd6b, db0c2e0d64f98fa7, 5be0cd19137e2179, 47b5481dbefa4fa4

3. m = 384, H0 =
6a09e667f3bcc908, cbbb9d5dc1059ed8, bb67ae8584caa73b, 629a292a367cd507,
3c6ef372fe94f82b, 9159015a3070dd17, a54ff53a5f1d36f1, 152fecd8f70e5939,
510e527fade682d1, 67332667ffc00b31, 9b05688c2b3e6c1f, 8eb44a8768581511,
1f83d9abfb41bd6b, db0c2e0d64f98fa7, 5be0cd19137e2179, 47b5481dbefa4fa4

4. m = 512, H0 =
2dd8a09a3c4e3efb, e07688dc6f166b73, 061a77a060948dcd, 0c34aa2a315e01d5,
8a47ea1880559ce6, c785f4364a0b98f4, 9f22535b264607a8, 53a8c8ca56e1288c,
2547d84e9ccde59d, 3c1563a9317c57a1, 9486eb50c7d8037f, 77341edad21e9a40,
c0f905d741c9cb74, d648813e45121dbb, ad0d1e41a985e51e, 4cf768fc7df11b00

4.5 Definition of the leaders and constants

Before every computation MT (S1||S2||S3|| . . . ||S2q−1||S2q), where Si

are 64-bit words, we define the 64-bit leaders l1 ofRA and l2 ofA, the 8-
bit words a1, b1, c1, a2, b2, c2, a3, b3, c3, the 16-bit words α1, β1, γ1, α2, β2,
γ2 and the 32-bit words A1, B1, C1, A2, B2, C2, as follows:

l1 = S1 + S2, l2 = S3 + S4,

a1||b1||c1||a2||b2||c2||a3||b3 = S5 + S6, c3 = a1

α1||β1||γ1||α2 = S7 + S8,

β2||γ2 = (S9 + S10)(mod 232),

A1||B1 = S11 + S12, C1||A2 = S13 + S14, B2||C2 = S15 + S16.

Here, the addition + is modulo 264.
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5 Design rationales

THE CHOICE OF THE STARTING BIJECTION. As NaSHA
starting bijection we wanted to use some publicly known function in
order to prevent suspicious of possible “trap door” in the implementa-
tion. We considered several possibilities: AES S-box [1], improved AES
S-box from Liu and all [12] and improved AES S-box with the APA
structure from Cui and Cao [3]. All three runners have some proc and
cons. The AES S-box is the most famous and the most investigated
S-box in cryptology, with good differential and linear resistance and
high algebraic degree. But it has simple algebraic structure with only
9 terms. The improved AES S-boxes has also good differential resis-
tance with differential 4-uniformity and good linear resistance. They
have the same algebraic degree as AES S-box, but they have much big-
ger algebraic complexity of 255 terms for the first, and 253 terms for
the second, S-box. Their inverse S-box has high algebraic complexity
of 255 terms as AES inverse S-box. But both are not enough studied
from other authors. Our winner f is the third solution, because of its
algebraic complexity and because it is a little bit more studied than the
second solution. The function f also satisfies the condition f(0) 6= 0
that is needed our extended Feistel network to derive a non-idempotent
and a non-associative quasigroup.

THE CHOICE OF THE LINEAR TRANSFORMATION. The lin-
ear transformation is used for obtaining suitable diffusion of the input
64-bit words. We use LFSRs for obtaining linear transformation that
is a bijection and that can be easily computed. For that aim we use
primitive polynomials over the Galois field GF(2), from the list [17].
The degree of the primitive polynomial for 224 and 256 hash need to be
16, and 32 for 384 and 512 hash. Since the algorithm applies the linear
transformation 16 (i.e, 32) times, we take the primitive polynomials
with 5 terms. Any other polynomial that fulfils these requirements is
a good choice too.

THE CHOICE OF THE QUASIGROUP TRANSFORMATIONS.
By our experience and some theoretical results we have obtained, quasi-
group transformations are good nonlinear building blocks for designing
different cryptographic primitives (e.g., the stream cipher Edon80 [6]
is still unbroken). We use quasigroups of huge order 264 and they
are defined by extended Feistel networks, that are generalizations of
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Feistel networks, defined by us in [15]. Our algorithm can also be im-
plemented by quasigroups of order 232, 2128, 2256 etc, but we found
that the choice of order 264 is optimal for obtaining tradeoff between
security and speed.

THE CHOICE OF THE EXTENDED FEISTEL NETWORKS. It
is not easy to define a workable quasigroup of huge order, like 264, hav-
ing good cryptographic properties. Our choice were extended Feistel
networks since they produce quasigroups of good cryptographic qual-
ities, and allows to insert tunable parameters in their definition. We
used that feature to obtain different quasigroups for every iteration of
the compression function and, much more, the used quasigroups are
functions of the processed message block.

We are using 9 8-bit words a1, b1, c1, a2, b2, c2, a3, b3, c3, 6 16-bit
words α1, β1, γ1, α2, β2, γ2 and 6 32-bit words A1, B1, C1, A2, B2, C2 in
every iteration of the compression function and pass them to extended
Feistel networks. The way of their definition was leaded by the idea all
bits of the processed input block to be included.

THE CHOICE OF THE COMPOSITE MAPPINGS IN THE MAIN
TRANSFORMATION AND THE TUNABLE SECURITY PARAME-
TER k. In general, the main transformationMT can be defined as any
composition of the transformations A and RA. Having in mind the
properties of the extended Feistel networks, where the starting bijection
influences mostly the right half of the output result, we are using the
transformation RA after rotating left for 32 bits the obtained 64-bit
words from A. In such a way, a homogeneous spreading of the starting
bijection is obtained. Also, by the transformation A the influence of
the input bits are spreading only in the right part of the output, that is
why RA is defined in a reverse way of A. At the end, we obtain every
bit of an input block to influence almost all bits of the output blocks
of RA ◦ A.

The tunable security parameter of the NaSHA hash algorithm is the
complexity k of the main transformation MT , since we define MT as
composition of k mappings of kind RA and A, applied consecutively.
The choice of higher values of k will give stronger security, but lower
speed. Our choice, recommendation and low bound is k = 2 (there
is no upper bound). We believe that the cryptanalysis will became
practical if k = 1, that is when MT = A or MT = RA.
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6 Preliminary security analysis

NaSHA family of cryptographic hash function use Merkle-Damg̊ard
domain extender with standard Merkle-Damg̊ard strengthening. It has
incorporated also the wide-pipe design of Lucks [13, 14] and Coron’s
[2] suggestions. In every iterative step of the compression function, we
use 2n-bit message blocks and 2n-bit chaining variable, so the strings
of length 4n bits are mapped to strings of length 4n bits and then only
2n bits are kept for the next iterative step. And, the most important,
the length of any chaining variable is at least two times wider than
the final digest value. For the same reasons D. Gligorovski [7] stated,
by this kind of design we gain resistance to some generic attacks like:
Joux multicollision attack [9], length extension attack, Dean fixed point
attack [5], Kelsey and Schneier long message 2nd preimage attack [10],
Kelsey and Kohno herding attack [11] and 2nd collision attack.

6.1 Collision, preimage and 2nd preimage resistance of NaSHA

The collision resistance of NaSHA-(m, k, r) depends mainly of Step 5 of
the NaSHA-(m, k, r) hash algorithm. Namely, by suitable definition of
the quasigroup operation one can get higher or lower collision security.
For obtaining suitable security, we introduce several security param-
eters a1, b1, c1, a2, b2, c2, a3, b3, c3, α1, β1, γ1, α2, β2, γ2A1, B1, C1, A2, B2,
C2, l1, l2. The security analysis of the MT reduces to solving system
of equations, each equation of kind x ∗ (x + a) = b or (x + a) ∗ x = b.
Here ∗ is a quasigroup operation and + is addition modulo 264. As well
as we know, there is no other way of solving equations of above kind,
except checking all the possible values of x (i.e., brute force attack).
We show that these attacks are quite inefficient. So, the best collision,
preimage and second preimage attacks are the generic attacks. All the
proofs are given in part 2.B.4. of this submission.

6.2 Avalanche effect

We tested the avalanche propagation of one bit differences in compres-
sion function of NaSHA-(m, 2, 6), where m ∈ {224, 256, 384, 512}, in
two cases: when the initial message consists of all zeros and when the
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initial message is randomly generated. We present in Tables 2 and 3
the obtained results for messages of length 8, 80, 800, 8000 and 80000
bits, where minimum, average and maximum different bits and stan-
dard deviation are given. Table 2 is for initial messages consisting of all
zeros and Table 3 is for randomly generated initial message. One can
see that in every case the Hamming distance is around m/2, or one bit
difference of input bits produces about 50% different output bits, as it
would be expected in theoretical models of ideal random functions.

n 8 bits 80 bits 800 bits 8000 bits 80000 bits
224 min = 42% min = 41% min = 41% min = 38% min = 35%

avg = 50.06% avg = 49.86% avg = 50.21% avg = 49.97% avg = 50.02%
max = 56% max = 57% max = 60% max = 63% max = 63%
sd = 4.44 sd = 3.48 sd = 3.39 sd = 3.40 sd = 3.41

256 min = 45% min = 43% min = 40% min = 37% min = 35%
avg = 49.12% avg = 50.88% avg = 50.11% avg = 49.96% avg = 50.00%
max = 55% max = 58% max = 58% max = 60% max = 62%
sd = 2.91 sd = 3.35 sd = 3.20 sd = 3.14 sd = 3.16

384 min = 46% min = 45% min = 40% min = 40% min = 39%
avg = 49.32% avg = 49.86% avg = 50.10% avg = 50.04% avg = 50.00%
max = 53% max = 54% max = 59% max = 59% max = 60%
sd = 1.96 sd = 2.49 sd = 2.52 sd = 2.60 sd = 2.61

512 min = 47% min = 45% min = 42% min = 41% min = 41%
avg = 50.12% avg = 50.01% avg = 50.04% avg = 49.99% avg = 50.00%
max = 51% max = 55% max = 58% max = 58% max = 58%
sd = 1.41 sd = 2.11 sd = 2.35 sd = 2.25 sd = 2.25

Table 2: Avalanche effect of input message with all zeros
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n 8 bits 80 bits 800 bits 8000 bits 80000 bits
224 min = 49% min = 41% min = 41% min = 37% min = 35%

avg = 52.68% avg = 50.38% avg = 50.14% avg = 49.99% avg = 50.00%
max = 56% max = 61% max = 62% max = 61% max = 63%
sd = 2.27 sd = 3.89 sd = 3.40 sd = 3.38 sd = 3.42

256 min = 42% min = 41% min = 41% min = 38% min = 36%
avg = 48.73% avg = 50.72% avg = 50.06% avg = 50.01% avg = 50.01%
max = 53% max = 60% max = 58% max = 61% max = 62%
sd = 3.80 sd = 3.46 sd = 3.14 sd = 3.18 sd = 3.18

384 min = 47% min = 43% min = 42% min = 40% min = 39%
avg = 50.29% avg = 49.95% avg = 49.87% avg = 49.98% avg = 50.00%
max = 54% max = 54% max = 57% max = 58% max = 59%
sd = 2.28 sd = 2.38 sd = 2.60 sd = 2.63 sd = 2.61

512 min = 49% min = 47% min = 43% min = 41% min = 40%
avg = 51.20% avg = 50.32% avg = 50.00% avg = 50.05% avg = 50.02%
max = 53% max = 55% max = 57% max = 58% max = 59%
sd = 1.28 sd = 1.95 sd = 2.26 sd = 2.25 sd = 2.26

Table 3: Avalanche effect of a randomly generated input message
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