Издателиск совет
Проф. д-р Саша Митрев
д-р Лиљана Колева - Гујева
д-р Душан Спасов
Доц. д-р Илија Киров
Д-р Милен Георгиевски
д-р Љупчо Михајлов

Редактиск одбор
Проф. д-р Саша Митрев
д-р Лиљана Колева - Гујева
Доц. д-р Илија Киров
д-р Милен Георгиевски
д-р Љупчо Михајлов
Д-р Душан Спасов
М-р Драгица Спасова

Одговорен уредник
Проф. д-р Саша Митрев
Главен уредник
д-р Лиљана Колева-Гујева

Компјутерска подготошка
М-р Фиданка Трајкова
Јазично уредување
Иван Василевски
(Македонски јазик)
Биљана Шовова - Костурнова
(Англиски јазик)

Реклајнски и администрација
Институт за јужни земјоделски култури - Струмица
„Гоце Делчев“ бг.
2 100 Струмица, Р. Македонија
Телефон: 034 345-096

Изданието филински е потпомогнато од Министерството за образование и наука на Република Македонија. За ова издание се плаќа 5% дая.
Реализирано: "2° Ангут" Штип / Тираж 500 броя

Editorial board
Prof. Sasa Mitev, Ph.D
Liijana Koleva - Gudeva, Ph.D
Dusan Spasov, Ph.D
Assoc. Prof. Ilja Karov, Ph.D
Milan Georgievski, Ph.D
Ljupco Mihajlov, Ph.D

Editorial staff
Prof. Sasa Mitev, Ph.D
Liijana Koleva - Gudeva, Ph.D
Assoc. Prof. Ilja Karov, Ph.D
Milan Georgievski, Ph.D
Ljupco Mihajlov, Ph.D
Dusan Spasov, Ph.D
Dragica Sapsova, M.Sc.

Responsible Editor
Prof. Sasa Mitev, Ph.D
Editor in Chief
Liijana Koleva-Gudeva, Ph.D

Computer preparation
Fidanke Trajkova, M.Sc.
Language editor
Ivan Vasilevski
(Macedonian)
Bijana Sopova - Kosturanova
(English)

Address of the editorship
Institute of Southern Crops
Strumica
Goce Delcev b.b.
2 100 Strumica, R Macedonia
Phone/fax: ++ 389 34 345-096

Translation: The publication is financed by the Ministry of Education and Science of the Republic of Macedonia. 5% payment.
Published by "2° Angut" Shtip / Print run 500 copies
CHEMICAL CONSTITUENTS OF PUNGENT SPICE PEPPER
(Capsicum annuum L.) FROM MACEDONIAN ORIGIN

Rafajlovksa Vesna*, Slaveska-Ralčki Renata**, Koleva-Gudeva Lilijana***, Mitrev S.****, Srbinoska Marija*****

Abstract
In this paper the chemical constituents of the pungent spice pepper Capsicum annuum L. sp. Microcarpus from Macedonian origin are estimated. Content of moisture, proteins and soluble sugars is 9.69%, 6.68% and 20.33%, respectively. Color capacity of the pungent spice pepper is 5.60 g capsanthin/kg pepper dry matter.

The influence of organic solvents on the pepper oleoresin extraction and contents of colored components and capsicin content in it is also studied. The highest quantity of pepper oleoresin (25%) is obtained using ethanol as extraction means. In the pepper oleoresin extracted by diethyl ether the highest concentration of color expressed as a capsanthin is determined. When n-hexane is applied during pepper extraction, in the color extracted quantity the red fraction is 93.83% from the total color contents in the pepper oleoresin.

According to the highest capsicin content of 1.53% in the pepper oleoresin, benzene is most suitable as compared to the other investigated extraction means.

*Faculty of Technology and Metallurgy, University of St. Cyril and Methodius, Radjar Bedeski 16, 1000 Skopje, Republic of Macedonia. E-mail: vesna@mtfd.mskm.edu.mk
**Faculty of Pharmacy, University of St. Cyril and Methodius, Vodnjanika 17, 1000 Skopje, R. Macedonia
***Institute of Southern Crops, University of St. Cyril and Methodius, Goce Delcev b.b., 2400 Strumica, R. Macedonia
****Institute of Tecnov, University of St. Klimant Obreiski, ul. Kicevski par.b.b., 7500 Pilek, R. Macedonia
*****Технологоско - металуршки факултет, Универзитет „Св. Кирил и Методиј“, „Рудер Бончанки“ 16, 1000 Скопие, Р. Македониа. E-mail: vesna@mtfd.mskm.edu.mk

For all scientific inquiries, please contact the University of St. Cyril and Methodius, Vodnjanika 17, 1000 Skopje, R. Macedonia.
Кратачка изложба

Во овој труд се определени хемиски компоненти на лутата зачинска пиперка Capsicum annuum L. var. Microcargi од Македонско потекло. Содржината на влага, протеини и раствоарливи шеќери е 9.60%, 6.68% и 20.33%, соодветно. Капацитетот на боја на лутата зачинска пиперка е 5.60 г капсантин kg сув материја.

Беа првучувани влијанието на органичните раствоарувачи врз екстракцијата на олеосерезинот од пиперката, како и содржината на обоени компоненти и содржината на капсанин во него. Највисоката кoličina на олеосерезин (25%) е добива со употреба на етанол. Во олеосерезинод од пиперка, екстрахиран со диетил етер, е одредена највисока концентрација на боја изразена како капсантин. Кога n-хексан е аплициран за време на екстракцијата на пиперка, во количината на екстрахирана ова пречила фракција е присутна со 93.83% од икономска содржина на боја во олеосерезинот. Според највисоката содржина на капсантин од 1.53% во олеосерезинот од пиперката, беа е најсоодветни во соредба со све други испитани екстрахиони средства.

Ключни зборови: лутата зачинска пиперка, капсантин, харојденовиди, хемиски соодветни, раствоаруващи, олеосерезини

1. Introduction

The red pepper (Capsicum annuum L.) has been used since ancient times, traditionally used in form of spice paprika, although, today, oleoresin are widely used (Nambudiri et al., 1970; Govindarajan, 1986a). Spices red pepper is worldwide use as a natural flavour and colorant in food industry, as well as raw material for the pharmaceutical industry.

In addition to the pungency if the spice pepper is pungent depending of the capsaicinoids presence mainly capsaicin, the spice pepper contains...
considerable amount of antioxidative components such as the carotenoids and vitamins (Govindarajan, 1986b; Rahman et al., 1986; Howard et al., 1994; Matsufuji et al., 1998). The commercial value of the spice pepper depends on its red colouring power. The components responsible for the colour are the carotenoids pigments (Davies et al., 1970; Baez, et al., 1989). The colouring and nutritional capacity of the carotenoids makes them interesting in the food industry as additives and functional food ingredients, in the form of pepper or oleoresin (Gordon and Bauernfeind, 1982).

One of the pepper products is pepper oleoresin extracted from the dried ripe fruits of *Capsicum annuum* L. using solvents with the lipophilic characteristics and subsequent solvents removed from the oleoresin extract (Kense, 1970; Rajaraman et al., 1981; Cvetkov and Rafajlovска, 1992). Pepper oleoresin basically contains pigments named capsanthin and carotenes (Minguez-Mosquera and Hornero-Mendes, 1998). Also, beside the pigments in the pepper oleoresin are present flavours and tastic agents, vitamins, fatty oil and capsaicin if pungent pepper is used for pepper oleoresin production (Vinaz et al., 1992; Minguez-Mosquera and Hornero-Mendes, 1993).

In the present work, characterisation of the pungent spice pepper (*Capsicum annuum* L. *ssp. Microcarpon*) is made by determination of the chemical composition. The influences of the extraction solvents on the pungency pepper oleoresin yield and the contents of capsaicin and carotenoids in it are also studied.

2. Materials and methods

Pepper (*Capsicum annuum* L. *ssp. Microcarpon*) was used as experimental material. The morphological characteristics of *Capsicum annuum* L. *ssp. Microcarpon* in the botanical ripening stage are 40 - 45 cm average height, small conical shape fruits with pericarp thickness to 1.2 mm and 2.4 cm length, fruit weight 2.5 - 2.9 g. Drying of the red pepper was made in greenhouse, seven days, on room temperature (25°C). The dried spice pepper was ground in laboratory cutting mill (Retch, Brukmann, Germany). For determination of the chemical composition spice pepper with 0.25 mm particles size was used.

Solvent: pro-analysis-grade solvents such as ethanol, acetone, diethyl ether, *n*-hexane, benzene were purchased from A. D. Alkaloid (Skopje, Republic of Macedonia).

2.1. Procedures for determination of the chemical composition:

- Content of dry matter: by drying at 105°C to constant mass achievement (AOAC, 1985).
Content of ash and sand: by burning at a constant temperature of 900°C to constant mass achievement. Sand determination is made by using the ash and 10% HCl (AOAC, 1988).

Content of total nitrogen, total proteins and protein’s nitrogen: by Kjeldahl method (AOAC, 1988).

Content of soluble sugars and degree of total reduction: by using Fehling and Bertrand methods (Trajković et al., 1983).

Content of colour components: by using Benedek method (Vračar, 2001).

2.2. Extraction procedure

Extraction of the pepper oleoresin is made by using Soxlet method. 5g of the ground pepper (0.25 mm particles size) first is macerated 24h in Erlenmeyer flask with 250 ml extraction solvent. After that, the same system is extracted 5h using Soxlet apparatus. Pepper oleoresin extraction is made applying solvents with different polarity degree. The dielectric constant of the used extraction solvents is given in the table 1.

The quantity of obtained pepper oleoresin after drying to constant mass (in vacuum drier, type Heraeus, Vaccumet, Germany, t = 40°C) is weigh. The efficiency of pepper oleoresin extraction is expressed as a yield of pepper oleoresin, according to quantity of extracted pepper sample.

2.3. Determination of colour components and capsaicin in pepper oleoresin:

Content of colour components: Pigments concentration in the pepper oleoresin was calculated using the extinction coefficient of the major pigment capsanthin (ε_{ext,λ=2300} nm 2300) in acetone. For colour quantification, pepper oleoresin was dissolved in 100 mL acetone (1st dissolution). 5 mL of the 1st dissolution was dissolved in 25 mL acetone (2nd dissolution) and absorbance was measured at 460 nm (UV-VIS spectrophotometer, Cary 50 Varian, Switzerland). Figure 1 shows the visible spectrum of carotenoids of pepper oleoresin in acetone.

For estimation of the fraction of the red carotenoids (C) and yellow carotenoids (C') in the pepper oleoresin we used the equations proposed by Hernando-Méndez and Mingués-Mosquera (2001).

\[C = \frac{A_{108} \times 2.114.0 - A_{172} \times 4.033}{270.9} \quad (\mu g/mL) \]

\[C' = \frac{A_{172} \times 1724.3 - A_{245} \times 2.450.1}{270.9} \quad (\mu g/mL) \]

To express the results in mg/kg, it is necessary to multiply by the final volume to which the sample was taken and divide it by the weight (grams) of sample. If the sample was diluted by the weight prior to the performance of the spectrophotometric measurement, this factor must be taken into consideration.
Content of capsaicin: The content of capsaicin in the pepper oleoresin is determined by spectrophotometric reading of the absorbance on 282 nm. 0.5 ml of the 1st dissolution dissolved in 25 ml ethanol (3rd dissolution), than 0.5 ml of 3rd dissolution was dissolved in 10 ml ethanol (4th dissolution) and absorbance was measured at 282 nm (UV-VIS spectrophotometer, Cary 50 Varian, Switzerland). The UV spectrum of capsaicin of the pepper oleoresin in ethanol is presented by figure 2.

The concentration of capsaicin is estimated from the standard curve for capsaicin \(y = 9.64 x + 0.005 \) \((R^2 = 0.9609) \), where \(x \) – mg capsaicin/ml extract and \(y \) – absorbance. The capsaicin content is expressed in the pepper oleoresin quantity.

3. Results and discussion

The content moisture, ash and sand in the investigated pungency spice pepper \(Capsicum annuum \) L. exp. \(Microcarya \), is 9.60%, 16.79 and 0.56%, respectively. The determined colour pepper capacity expressed as capsanthin is 5.60 g capsanthin/kg pepper dry matter. The total amount nitrogen is 2.83%, from which 1.07% belong to the protein’s nitrogen (Table 2).

In the literature data variation in the chemical composition with regards to the origin of the spice paprika are presented. The content of proteins is ranging up to 15%. From total sugars 75-98% belongs to the soluble sugars (Rahman et al., 1980; Vršič, 2001).

In table 3 the quantity of pepper oleoresin obtained by solvents extraction is presented. The biggest pepper oleoresin of 27.45% expressed as pepper oleoresin yield according to the pepper dry matter is obtained when ethanol is used. By decreasing the solvent polarity, the quantity of extracted pepper oleoresin also decrease. The solvents with lower dielectric constant as are diethyl ether, n-hexane and benzene, according to its non-polarity features extracted lower quantity of pepper oleoresin. The quantity of pepper oleoresin obtained with those applied solvents varied from 3.9% to 4.6% (table 3).

The influence of the solvent type on the presence of the colour components in pepper oleoresin expressed as capsanthin is given in table 4.

The pigments that give a red colour of the genus \(Capsicum \) are the carotenoids. They can be classified by colour into two groups, carotenes and xanthophylls. Depending on their chromophore chain, they give a red or yellow colouration. The red fraction is formed by capsanthin and capsorubin. \(\beta \)-carotene, \(\beta \)-cryptoxanthin, zeaxanthin, capsolutein and violaxanthin belong to the yellow fraction in paprika.

From the aspect of solvent capability to extract the colour from paprika, the biggest content of colour of 8.43% capsanthin in pepper oleoresin
or 58.95% yield of colour with the respect to the total colour in spice pepper is obtained by using diethyl ether during extraction. Ethanol extracted the lowest quantity of colour in pepper oleoresin, 43.63% from the total colour in the pungent spice pepper (Table 4).

When is compared the possibility of solvent for red and yellow pigments extraction are compared, it can be summarised that n-hexane is most suitable to extract the red pigments. In the pepper oleoresin obtained with n-hexane is determined 93.83% content of red fraction from the total colour content in pepper oleoresin. In the ethanol pepper oleoresin the content of yellow fraction is the higher (14.14%) than the content of yellow fraction in the oleoresin extracts produced with other investigated solvents as extraction means (table 5).

The literature data show the concentration of carotenoid pigments in pepper oleoresin in the range of 2.3% to 10.3% (Minguez-Mosquera and Pérez-Galvez, 1998; Iñiguez-Méndez and Minguez-Mosquera, 2001).

The capsaicin concentration in the pepper oleoresins varied from 0.18% to 1.55% and it depends on the solvent used in the spice pepper extraction. In the pepper oleoresin obtained by benzene highest capsaicin concentration (1.5352%, table 4) is determined.

4. Conclusion

The determined chemical constituents of pungent spice pepper Capsicum annuum L. ssp. Microcarpum from Macedonian origin contain moisture, proteins, soluble sugars and colour of 9.60%, 6.69%, 20.33% and 5.60 g capsanthin/kg pepper dry matter, respectively.

The highest quantity of pepper oleoresin of 25% is obtained using ethanol during extraction of Capsicum annuum L. ssp. Microcarpum.

Diethyl ether gave the highest concentration of colour in pepper oleoresin. In the oleoresin extracted from pepper applying n-hexane the red coloured fraction is 98.33% from the total colour determined in pepper oleoresin. The concentration of capsaicin in the pepper oleoresins ranged from 0.18% to 1.55% depend on the solvent used in the spice pepper extraction.

References

Table 1. Dielectric constant of the solvents

<table>
<thead>
<tr>
<th>Solvent type</th>
<th>Ethanol</th>
<th>Acetone</th>
<th>Diethyl ether</th>
<th>Benzene</th>
<th>n-hexane</th>
<th>n-hexane</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>25.7</td>
<td>21.4</td>
<td>4.14</td>
<td>2.28</td>
<td>2.62</td>
<td>2.62</td>
</tr>
</tbody>
</table>

Table 2. Chemical composition of Carpohum annuus Lsp. Microscopy

<table>
<thead>
<tr>
<th>Component</th>
<th>Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>9.60</td>
</tr>
<tr>
<td>Ash</td>
<td>16.79</td>
</tr>
<tr>
<td>Sand</td>
<td>0.56</td>
</tr>
<tr>
<td>Total nitrogen (%)</td>
<td></td>
</tr>
<tr>
<td>Bukiņu aizkārt (%)</td>
<td>2.83</td>
</tr>
<tr>
<td>Protein nitrogen (%)</td>
<td></td>
</tr>
<tr>
<td>Proteins (g)</td>
<td>1.07</td>
</tr>
<tr>
<td>Protein (%)</td>
<td>6.68</td>
</tr>
<tr>
<td>Total reduction (%)</td>
<td>32.34</td>
</tr>
<tr>
<td>Vegetable protein (%)</td>
<td></td>
</tr>
<tr>
<td>Soluble sugar (%)</td>
<td>20.33</td>
</tr>
<tr>
<td>Colour (g carpohumina/kg dry matter)</td>
<td></td>
</tr>
<tr>
<td>Boja (g karpošasins/kg sula materijas)</td>
<td>5.60</td>
</tr>
</tbody>
</table>
Table 3. Yield of pepper oleoresin

| Solvent | Oleoresin weight (g) | Yield of oleoresin (%) | Yield of oleoresin (%) *
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ethanol</td>
<td>1.2504</td>
<td>25.60</td>
<td>27.45</td>
</tr>
<tr>
<td>hexane</td>
<td>0.3100</td>
<td>6.20</td>
<td>6.82</td>
</tr>
<tr>
<td>benzene</td>
<td>0.2048</td>
<td>4.09</td>
<td>4.52</td>
</tr>
<tr>
<td>n-hexane : benzene 1:1</td>
<td>0.2087</td>
<td>4.17</td>
<td>4.59</td>
</tr>
<tr>
<td>diethyl ether : diethyl ether 1:1</td>
<td>0.1813</td>
<td>3.65</td>
<td>3.99</td>
</tr>
</tbody>
</table>

*According to the dry matter of paprika

Table 4. Content of capsaicin and colour components in pepper oleoresin

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Capsaicin in oleoresin (%)</th>
<th>Yield of colour (%) *</th>
<th>Capsaicin in oleoresin (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethanol</td>
<td>0.85</td>
<td>43.63</td>
<td>0.1814</td>
</tr>
<tr>
<td>hexane</td>
<td>4.89</td>
<td>58.95</td>
<td>1.0481</td>
</tr>
<tr>
<td>benzene</td>
<td>5.91</td>
<td>48.12</td>
<td>1.3280</td>
</tr>
<tr>
<td>n-hexane: benzene 1:1</td>
<td>5.97</td>
<td>49.42</td>
<td>1.5352</td>
</tr>
<tr>
<td>diethyl ether : diethyl ether 1:1</td>
<td>6.31</td>
<td>45.35</td>
<td>1.3889</td>
</tr>
</tbody>
</table>

*According to the total colour in spice paprika

*measured on dry matter basis
Table 5. Yield of fractions of red and yellow carotenoids in pepper oleoresin

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Content of oleoresin in pepper</th>
<th>Fraction of red carotenoids (%)</th>
<th>Fraction of yellow carotenoids (%)</th>
<th>C<4> (%)</th>
<th>C<6> (%)</th>
<th>C<8> (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethanol</td>
<td></td>
<td>0.70</td>
<td>0.12</td>
<td>85.86</td>
<td>14.14</td>
<td></td>
</tr>
<tr>
<td>acetone</td>
<td></td>
<td>4.20</td>
<td>0.50</td>
<td>89.21</td>
<td>10.79</td>
<td></td>
</tr>
<tr>
<td>n-hexane</td>
<td></td>
<td>5.34</td>
<td>0.35</td>
<td>93.83</td>
<td>6.17</td>
<td></td>
</tr>
<tr>
<td>benzene</td>
<td></td>
<td>5.50</td>
<td>0.57</td>
<td>90.03</td>
<td>9.97</td>
<td></td>
</tr>
<tr>
<td>n-hexane:benzene 1:1</td>
<td></td>
<td>5.26</td>
<td>0.80</td>
<td>86.78</td>
<td>13.22</td>
<td></td>
</tr>
<tr>
<td>diethyl ether</td>
<td></td>
<td>7.27</td>
<td>0.89</td>
<td>89.13</td>
<td>10.87</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. a) Visible spectrum of capsaicin in pepper oleoresin b) UV spectrum of capsaicin in pepper oleoresin

Свичка 1. а) Видив спектар на капсацини во олеорезин б) UV спектар на капсацини во олеорезин