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CALCULATION OF MULTI-STATE TWO TERMINAL 
RELIABILITY 

Natasha Stojkovic1, Limonka Lazarova2 and Marija Miteva3 

 
1Faculty of Computer Science, “Goce Delcev” University– Stip 

(natasa.maksimova, limonka.lazarova, marija.miteva)@ugd.edu.mk 
 
 
Abstract.  Traditionally, reliability of the transportation system has  been  analyzed from 
a binary perspective. It is assumed that a system and its components can be in either a 
working or a failed state. But, many transportation systems as: telecommunication 
systems, water distribution, gas and oil production and hydropower generation systems 
are consisting of elements that may operate in more than two states. The problem that 
we consider in this paper is known as the multi-state two terminal reliability computation. 
The multi – state two terminal reliability can be computed with the formula of inclusion 
and exclusion, if the minimal path vector or minimal cut vector are known. 

Keywords: multi-state systems, network reliability, minimal path vectors, minimal cut 
vectors. 

 
 
1 Introduction 
Two-terminal network reliability for binary transportation system has been 

studied in various ways. For the binary network it is assumed that a whole 
system and its components can be in two states: working or failed state. 
However, the binary approach does not completely describe some 
transportation systems. Such systems are telecommunication systems, water 
distribution, gas and oil production and hydropower generation systems. These 
networks and its components may operate in any of several intermediate states 
and better results may be obtained using a multi-state reliability approach.[1] 
The authors developed a multi-state approach for exact computation of multi-
state two-terminal reliability at demeaned level d (M2TRd). The multi-state two 
terminal reliability is defined as the probability that a demand of d units can be 
transmitted from source to sink nodes through multi-state edges [2]. The multi 
– state two terminal reliability can be computed if the minimal path vector or 
minimal cut vectors are known.  In the literature many algorithms for calculating 
on minimal path or cut vectors are known.  

Some algorithms for obtaining minimal path or cut vectors are given in [1], 
[2], [3] and [4]. In [1] is developed a multi-state approach for exact computation 
of multi-state two-terminal reliability. In the paper is proposed algorithm for 
obtaining minimal path vector. Disadvantage of this algorithm is that it gives 
candidates minimal path vectors that are not minimal. In [2] is proposed 
algorithm for obtaining minimal cut vectors for the multi-state two-terminal 
transportation system. The disadvantage of this algorithm is that it works only 
for weak homogeneous components. The components can have different 
number of state, but the first state of the components has to be the same. In [3] 
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S-BOXES – PARAMETERS, CHARACTERISTICS AND CLASSIFICATIONS 
Dusan Bikov1, Stefka Bouyuklieva2 and Aleksandra Stojanova3 

 
1 “Goce Delcev” University – Stip  

(dusan.bikov, aleksandra.stojanova)@ugd.edu.mk 
2 “St.Cyril and St.Methoduis University” of Veliko Tarnovo  

(stefka_iliya)@yahoo.com 
 

Abstract. S-Boxes are key building blocks in the design of the block ciphers. They are 
basically used to hide the relationship between the plain text and the cipher text. 
In this paper we study the parameters of Boolean functions and S-boxes, which are 
important in the design of good cryptosystems. We give a brief overview of the selection 
criteria on S-boxes, which can be resistant to different type of cryptanalytic attacks. For this 
goal optimality of S-box is defined. We present different variants for classification of S-boxes 
and give some examples. Also we list the results of our computer calculations for the 
parameters of Boolean functions and S-boxes that are essential in the cryptographic 
research. Finally, we give general framework of the direction in which our study is focused. 
 
Keywords: Boolean function, Differential cryptanalysis, Linear cryptanalysis, Affine equivalence. 

 
 

1 Introduction 
In his paper “Communication Theory of Secrecy Systems” from 1949, Claude Shannon introduced 

some design principles for ciphers [1]. He proposed confusion and diffusion in the encryption algorithms. 
Cryptosystems are still designed according to these principles. The key elements in almost all block ciphers 
are the substitution boxes (S-boxes), which are used to ensure the confusion [1] of the information.  

S-boxes form the non-linear part of a block cipher and therefore they are very important for the security 
of these ciphers. S-boxes have to be chosen carefully, in order to make the cipher resistant against different 
attacks. Thus, the generation and classification of small S-boxes with good linear and differential properties 
is very helpful. The S-box is a function S with values that are bit strings, or 

𝑆𝑆: 𝐹𝐹2
𝑛𝑛 → 𝐹𝐹2

𝑚𝑚 
In many cases it is represented by a table. For any vector 𝑣𝑣 ∈ 𝐹𝐹2

𝑚𝑚  a component function 𝑆𝑆𝑏𝑏: 𝐹𝐹2
𝑛𝑛 → 𝐹𝐹2 

is defined by Sb(x) = b · S(x). As Sb are Boolean functions, some their parameters and properties are very 
important in the design of S-boxes. 

We take into account the following parameters of an S-box: 
- Difference distribution table. 
- Differential Uniformity (Diff(S) or Δ(S)). 
- Linear approximation table. 
- Linearity, linear probability and linear probability bias. 
- Branch number. 

We give some examples for 4×4, and greater S-boxes and present some classification results in the 
4×4 case. 

We can generate good S-boxes with two primary ways: (1) picking a random large S-box or (2) 
generating small S-boxes with good linear and differential properties. The main drawback of picking a 
random large S-box, is that these S-boxes are much more inefficient to implement, especially in hardware 
[2]. 

It is difficult to find an optimal S-box, because of a huge number of permutations for small values of n-
bits S-box. For example, the number of 4-bit permutations is still huge: roughly 244. Because of this, after 
exhaustively checking all, finding good S-box, is no option. Resistance of S-box against most attacks 
remains unchanged, when invertible affine transformation before and after the S-box is applied. This 
reduction allows us to check all optimal S-boxes thoroughly, with consideration to the other criteria, such as 
algebraic degree.   

  
1.1 Overview of this paper  
In section 2, we give s-box properties notation. In section 3, we find parameters for example 4-bit S-

box, and we show results for testing S-boxes with different size. In section 4, we define optimal criteria. In 
section 5, we suggest further ideas to be investigated. We conclude in section 6. 
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2.2 Differential cryptanalysis (DC)  
Differential cryptanalysis is proposed by Biham and Shamir [4], and is basically applied to block ciphers. 

This attack keeps up with the differences in the propagation during the encryption of the messages m and 
m+δ through the different rounds in a block cipher. Here a difference distribution table DDT is defined as 

𝐷𝐷𝑎𝑎,𝑏𝑏 = #{𝑥𝑥 ∈ 𝐹𝐹2
𝑛𝑛: 𝑆𝑆(𝑥𝑥) ⊕ 𝑆𝑆(𝑥𝑥 ⊕ 𝑎𝑎) = 𝑏𝑏}. 

 Similarly to the linear case, a differential probability is defined as 

𝐷𝐷𝐷𝐷𝑎𝑎,𝑏𝑏 = 1
2𝑛𝑛 𝐷𝐷𝑎𝑎,𝑏𝑏. 

To measure the resistance against differential cryptanalysis we take the highest possible value in DDT 
called differential uniformity  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑆𝑆) =  𝑚𝑚𝑎𝑎𝑥𝑥{𝐷𝐷𝑎𝑎,𝑏𝑏, 𝑎𝑎 ∈ 𝐹𝐹2
𝑛𝑛, 𝑎𝑎 ≠ 0, 𝑏𝑏 ∈ 𝐹𝐹2

𝑚𝑚}. 
Diff(S) is related to the maximal probability that any fixed nonzero input difference causes any fixed 

output difference after applying the S-box. 
 

2.3 Branch number  
An important parameter describing the diffusion capabilities is the branch number. Branch number [5] 

is defined as 
𝐵𝐵𝐵𝐵(𝑆𝑆) =  min

𝑎𝑎,𝑏𝑏∈𝐹𝐹2
𝑛𝑛,𝑎𝑎≠𝑏𝑏

(𝑤𝑤𝐻𝐻(𝑎𝑎 ⊕ 𝑏𝑏) + 𝑤𝑤𝐻𝐻(𝑆𝑆(𝑎𝑎) ⊕ 𝑆𝑆(𝑏𝑏))) 
where wH  is the Hamming weight and S the S-box. 

The branch number here depends on the position of the values in the difference distribution table.  
For bijective S-boxes BN ≥2. Branch number is related to the avalanche property [9] of the S-box and should 
be as greater as possible. In [6] differential branch number and linear branch number are defined. 

 
3. Finding S-boxes parameters  
Here we calculate some parameters of the 4-bit S-box G3, which is one of the 16 different optimal S-

boxes classified in [2]. We present G3 by the following table: 
 
   Table 1. S-box G3 

a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
S(a) 0 1 2 13 4 7 15 6 8 12 5 3 10 14 11 9 

 
It can be represented also as a permutation, in this case this is the 16-tuple with values from the second 

row of Table 1: (0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 5, 3, 10, 14, 11, 9), so 
 G3: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) → (0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 5, 3, 10, 14, 11, 9). 
Replacing every number by its binary 4-bit string, we obtain 

 

 

 

 
 
To calculate the linearity Lin(S) of S, we use the first order Reed-Muller code RM (1, 4). The set of all 

binary vectors (true tables) corresponding to the affine Boolean functions in n variables, coincides with the 
first order Reed-Muller code RM (1, n). It is a linear code of length 2n, dimension n+1 and minimum distance 
2n-1.  

RM (1, 4) has a generator matrix: 
 

 

 
 
 
 
 
 
 
For the linearity of G3 we have  𝑛𝑛𝑛𝑛(𝑆𝑆𝑏𝑏) = 𝑑𝑑(𝑆𝑆𝑏𝑏, 𝑅𝑅𝑅𝑅(1,4)) 

⟹ 𝐿𝐿𝐷𝐷𝑛𝑛(𝑆𝑆𝑏𝑏) = 24 − 2𝑛𝑛𝑛𝑛(𝑆𝑆𝑏𝑏) = 16 − 2𝑑𝑑(𝑆𝑆𝑏𝑏, 𝑅𝑅𝑅𝑅(1,4)) 
𝐿𝐿𝐷𝐷𝑛𝑛(𝑆𝑆) = max 𝐿𝐿𝐷𝐷𝑛𝑛(𝑆𝑆𝑏𝑏) = 8 

 

0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1
0 0 0 1 1 1 1 1 0 1 1 0 0 1 0 0

0,1,2,13,4,7,15,6,8,12,5,3,10,14,11,9 .
0 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0
0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 1

 
 
 
 
 
 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

( (1,4)) 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

G RM

 
 
 
 
 
 
 
 

2. S-Box Properties - Notation 
Let 𝐹𝐹2 = {0,1} be a finite field with two elements and 𝐹𝐹2

𝑛𝑛 be the n-dimensional vector space over 𝐹𝐹2.  A 
Boolean function in n variables is a function 𝑓𝑓: 𝐹𝐹2

𝑛𝑛 → 𝐹𝐹2 which maps any binary vector of length n (n-tuple or 
n bit input) to 0 or 1. A common way of representing a Boolean function is by supplying a list of output values 
for each n-bit input vector, called the truth table of the function. Actually this is a vector consisting of all the 
outputs which we obtain for the lexicographically ordered inputs:  

𝑓𝑓 ⟼ 𝑣𝑣𝑓𝑓 = (𝑣𝑣0, 𝑣𝑣1, … , 𝑣𝑣2𝑛𝑛−1) ∈ 𝐹𝐹2
2𝑛𝑛, 

where 𝑣𝑣𝑖𝑖 = 𝑓𝑓(𝑖𝑖)̅, 𝑖𝑖 ̅ is the binary representation of the integer i. The number of all Boolean functions in n 
variables is 22𝑛𝑛. 

Every Boolean function can be written as a polynomial: 
𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑ 𝑐𝑐𝑢𝑢𝑥𝑥𝑢𝑢

𝑢𝑢
,                   (1) 

where 𝑐𝑐𝑢𝑢 ∈ 𝐹𝐹2, 𝑥𝑥𝑢𝑢 = 𝑥𝑥1
𝑢𝑢1𝑥𝑥2

𝑢𝑢2 … 𝑥𝑥𝑛𝑛
𝑢𝑢𝑛𝑛, 𝑢𝑢 = (𝑢𝑢1, 𝑢𝑢2, … , 𝑢𝑢𝑛𝑛) ∈ 𝐹𝐹2

𝑛𝑛. This presentation is called Algebraic Normal Form 
(ANF) of the function. The degree of the polynomial (1) is the algebraic degree of f (deg f). Obviously, the 
maximum degree of a Boolean function in n variables is n. 

A Boolean function with algebraic degree at most 1 is called affine, so the function f is affine Boolean 
function if 

𝑓𝑓(𝑥𝑥1,  .  .  .  ,  𝑥𝑥𝑛𝑛) =  𝑎𝑎0 + 𝑎𝑎1𝑥𝑥1 +··· +𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑎𝑎 ∙ 𝑥𝑥 + 𝑎𝑎0, 
where  𝑎𝑎 ∈ 𝐹𝐹2

𝑛𝑛, 𝑎𝑎0 ∈ 𝐹𝐹2. If 𝑎𝑎0 = 0, the affine function is called linear. 
 Nonlinearity nl (f) of the Boolean function f is the minimal Hamming distance from f to the affine 

functions: 
𝑛𝑛𝑛𝑛(𝑓𝑓) = min{𝑑𝑑(𝑓𝑓 ,  𝑔𝑔)| 𝑔𝑔 − 𝑎𝑎𝑓𝑓𝑓𝑓𝑎𝑎𝑛𝑛𝑎𝑎 𝑓𝑓𝑢𝑢𝑛𝑛𝑐𝑐𝑓𝑓𝑎𝑎𝑓𝑓𝑛𝑛 } 

The nonlinearity is at most 2𝑛𝑛−1 − 2𝑛𝑛/2−1 [7]. For cryptographic Boolean functions, nl (f) must be close 
to this maximum to prevent the system from attacks by linear approximations, correlation attacks, fast 
correlation attacks etc. [8]. 

A Boolean function f on 𝐹𝐹2
𝑛𝑛 is also uniquely determined by its Walsh transform. The Walsh transform 

𝑓𝑓𝑊𝑊 of  f  is an integer valued function defined by 
𝑓𝑓𝑤𝑤(𝑎𝑎) = ∑ (−1)𝑓𝑓(𝑥𝑥)+〈𝑎𝑎,𝑥𝑥〉

𝑥𝑥∈𝐹𝐹2
𝑛𝑛

= 2𝑛𝑛 − 2𝑑𝑑𝐻𝐻(𝑓𝑓, 𝑓𝑓𝑎𝑎) 

where 〈𝑎𝑎, 𝑥𝑥〉 is scalar product.  
Linearity Lin (f) of the Boolean function f is defined by using Walsh transform 

𝐿𝐿𝑎𝑎𝑛𝑛(𝑓𝑓) = max
𝑎𝑎∈𝐹𝐹2

𝑛𝑛|𝑓𝑓𝑤𝑤(𝑎𝑎)| ≥ 2𝑛𝑛 2⁄ . 
Linearity and nonlinearity of a Boolean function are connected by the equality 

 𝑛𝑛𝑛𝑛(𝑓𝑓) = 2𝑛𝑛−1 − 1
2 𝐿𝐿𝑎𝑎𝑛𝑛(𝑓𝑓). 

From mathematical point of view S-box (or vectorial Boolean function) is a function S, with values that 
are bit string, or mapping of n bits to m bits 

𝑆𝑆: 𝐹𝐹2
𝑛𝑛 → 𝐹𝐹2

𝑚𝑚. 
For any vector 𝑏𝑏 = (𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑚𝑚)  ∈ 𝐹𝐹2

𝑚𝑚  we consider the corresponding component function 𝑆𝑆𝑏𝑏: 𝐹𝐹2
𝑛𝑛 → 𝐹𝐹2 

defined by  
𝑆𝑆𝑏𝑏(𝑥𝑥) = 〈𝑏𝑏, 𝑆𝑆(𝑥𝑥)〉 = 𝑏𝑏1𝑆𝑆1(𝑥𝑥) + ⋯ + 𝑏𝑏𝑚𝑚𝑆𝑆𝑚𝑚(𝑥𝑥). 

 
2.1 Linear cryptanalysis (LC) 
Linearity is a measure for resistance against linear cryptanalysis [3]. We define linearity of S as 

𝐿𝐿𝑎𝑎𝑛𝑛(𝑆𝑆) = max
𝑎𝑎∈𝐹𝐹2

𝑛𝑛,𝑏𝑏∈𝐹𝐹2
𝑚𝑚,𝑏𝑏≠0

|𝑆𝑆𝑏𝑏
𝑤𝑤(𝑎𝑎)| =  max

𝑏𝑏∈𝐹𝐹2
𝑚𝑚,𝑏𝑏≠0

 𝐿𝐿𝑎𝑎𝑛𝑛(𝑆𝑆𝑏𝑏) 

In the theory of block ciphers related to linear cryptanalysis, the linear approximation table is studied. 
The linear approximation table is a 2𝑛𝑛 × 2𝑚𝑚 table whose entries are defined as 

𝐿𝐿𝑎𝑎,𝑏𝑏 = #{𝑥𝑥 ∈ 𝐹𝐹2
𝑛𝑛: 〈𝑏𝑏, 𝑆𝑆(𝑥𝑥)〉 = 〈𝑎𝑎, 𝑥𝑥〉} = 2𝑛𝑛 − 𝑑𝑑𝐻𝐻(𝑆𝑆𝑏𝑏, 𝑓𝑓𝑎𝑎) 

The probability of a linear approximation of a linear combination of output bits Sb by a linear combination 
of input bits we define as 

𝑝𝑝𝑎𝑎,𝑏𝑏 = 1
2𝑛𝑛 𝐿𝐿𝑎𝑎,𝑏𝑏. 

Linear probability bias ε is a correlation measure for this deviation from the probability ½ for which it is 
entirely uncorrelated: 

𝜀𝜀𝑎𝑎,𝑏𝑏 = |𝑝𝑝𝑎𝑎,𝑏𝑏 − 1
2| ≤ |𝐿𝐿𝑎𝑎𝑛𝑛(𝑆𝑆)

2𝑛𝑛+1 | 
The smaller is the linearity more resistant is the S-box against linear cryptanalysis. An open problem 

for given integers and m is to find nxm S-boxes with the smallest linearity.  
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2.2 Differential cryptanalysis (DC)  
Differential cryptanalysis is proposed by Biham and Shamir [4], and is basically applied to block ciphers. 

This attack keeps up with the differences in the propagation during the encryption of the messages m and 
m+δ through the different rounds in a block cipher. Here a difference distribution table DDT is defined as 

𝐷𝐷𝑎𝑎,𝑏𝑏 = #{𝑥𝑥 ∈ 𝐹𝐹2
𝑛𝑛: 𝑆𝑆(𝑥𝑥) ⊕ 𝑆𝑆(𝑥𝑥 ⊕ 𝑎𝑎) = 𝑏𝑏}. 

 Similarly to the linear case, a differential probability is defined as 

𝐷𝐷𝐷𝐷𝑎𝑎,𝑏𝑏 = 1
2𝑛𝑛 𝐷𝐷𝑎𝑎,𝑏𝑏. 

To measure the resistance against differential cryptanalysis we take the highest possible value in DDT 
called differential uniformity  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑆𝑆) =  𝑚𝑚𝑎𝑎𝑥𝑥{𝐷𝐷𝑎𝑎,𝑏𝑏, 𝑎𝑎 ∈ 𝐹𝐹2
𝑛𝑛, 𝑎𝑎 ≠ 0, 𝑏𝑏 ∈ 𝐹𝐹2

𝑚𝑚}. 
Diff(S) is related to the maximal probability that any fixed nonzero input difference causes any fixed 

output difference after applying the S-box. 
 

2.3 Branch number  
An important parameter describing the diffusion capabilities is the branch number. Branch number [5] 

is defined as 
𝐵𝐵𝐵𝐵(𝑆𝑆) =  min

𝑎𝑎,𝑏𝑏∈𝐹𝐹2
𝑛𝑛,𝑎𝑎≠𝑏𝑏

(𝑤𝑤𝐻𝐻(𝑎𝑎 ⊕ 𝑏𝑏) + 𝑤𝑤𝐻𝐻(𝑆𝑆(𝑎𝑎) ⊕ 𝑆𝑆(𝑏𝑏))) 
where wH  is the Hamming weight and S the S-box. 

The branch number here depends on the position of the values in the difference distribution table.  
For bijective S-boxes BN ≥2. Branch number is related to the avalanche property [9] of the S-box and should 
be as greater as possible. In [6] differential branch number and linear branch number are defined. 

 
3. Finding S-boxes parameters  
Here we calculate some parameters of the 4-bit S-box G3, which is one of the 16 different optimal S-

boxes classified in [2]. We present G3 by the following table: 
 
   Table 1. S-box G3 

a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
S(a) 0 1 2 13 4 7 15 6 8 12 5 3 10 14 11 9 

 
It can be represented also as a permutation, in this case this is the 16-tuple with values from the second 

row of Table 1: (0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 5, 3, 10, 14, 11, 9), so 
 G3: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) → (0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 5, 3, 10, 14, 11, 9). 
Replacing every number by its binary 4-bit string, we obtain 

 

 

 

 
 
To calculate the linearity Lin(S) of S, we use the first order Reed-Muller code RM (1, 4). The set of all 

binary vectors (true tables) corresponding to the affine Boolean functions in n variables, coincides with the 
first order Reed-Muller code RM (1, n). It is a linear code of length 2n, dimension n+1 and minimum distance 
2n-1.  

RM (1, 4) has a generator matrix: 
 

 

 
 
 
 
 
 
 
For the linearity of G3 we have  𝑛𝑛𝑛𝑛(𝑆𝑆𝑏𝑏) = 𝑑𝑑(𝑆𝑆𝑏𝑏, 𝑅𝑅𝑅𝑅(1,4)) 

⟹ 𝐿𝐿𝐷𝐷𝑛𝑛(𝑆𝑆𝑏𝑏) = 24 − 2𝑛𝑛𝑛𝑛(𝑆𝑆𝑏𝑏) = 16 − 2𝑑𝑑(𝑆𝑆𝑏𝑏, 𝑅𝑅𝑅𝑅(1,4)) 
𝐿𝐿𝐷𝐷𝑛𝑛(𝑆𝑆) = max 𝐿𝐿𝐷𝐷𝑛𝑛(𝑆𝑆𝑏𝑏) = 8 

 

0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1
0 0 0 1 1 1 1 1 0 1 1 0 0 1 0 0

0,1,2,13,4,7,15,6,8,12,5,3,10,14,11,9 .
0 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0
0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 1

 
 
 
 
 
 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

( (1,4)) 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

G RM

 
 
 
 
 
 
 
 

2. S-Box Properties - Notation 
Let 𝐹𝐹2 = {0,1} be a finite field with two elements and 𝐹𝐹2

𝑛𝑛 be the n-dimensional vector space over 𝐹𝐹2.  A 
Boolean function in n variables is a function 𝑓𝑓: 𝐹𝐹2

𝑛𝑛 → 𝐹𝐹2 which maps any binary vector of length n (n-tuple or 
n bit input) to 0 or 1. A common way of representing a Boolean function is by supplying a list of output values 
for each n-bit input vector, called the truth table of the function. Actually this is a vector consisting of all the 
outputs which we obtain for the lexicographically ordered inputs:  

𝑓𝑓 ⟼ 𝑣𝑣𝑓𝑓 = (𝑣𝑣0, 𝑣𝑣1, … , 𝑣𝑣2𝑛𝑛−1) ∈ 𝐹𝐹2
2𝑛𝑛, 

where 𝑣𝑣𝑖𝑖 = 𝑓𝑓(𝑖𝑖)̅, 𝑖𝑖 ̅ is the binary representation of the integer i. The number of all Boolean functions in n 
variables is 22𝑛𝑛. 

Every Boolean function can be written as a polynomial: 
𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑ 𝑐𝑐𝑢𝑢𝑥𝑥𝑢𝑢

𝑢𝑢
,                   (1) 

where 𝑐𝑐𝑢𝑢 ∈ 𝐹𝐹2, 𝑥𝑥𝑢𝑢 = 𝑥𝑥1
𝑢𝑢1𝑥𝑥2

𝑢𝑢2 … 𝑥𝑥𝑛𝑛
𝑢𝑢𝑛𝑛, 𝑢𝑢 = (𝑢𝑢1, 𝑢𝑢2, … , 𝑢𝑢𝑛𝑛) ∈ 𝐹𝐹2

𝑛𝑛. This presentation is called Algebraic Normal Form 
(ANF) of the function. The degree of the polynomial (1) is the algebraic degree of f (deg f). Obviously, the 
maximum degree of a Boolean function in n variables is n. 

A Boolean function with algebraic degree at most 1 is called affine, so the function f is affine Boolean 
function if 

𝑓𝑓(𝑥𝑥1,  .  .  .  ,  𝑥𝑥𝑛𝑛) =  𝑎𝑎0 + 𝑎𝑎1𝑥𝑥1 +··· +𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑎𝑎 ∙ 𝑥𝑥 + 𝑎𝑎0, 
where  𝑎𝑎 ∈ 𝐹𝐹2

𝑛𝑛, 𝑎𝑎0 ∈ 𝐹𝐹2. If 𝑎𝑎0 = 0, the affine function is called linear. 
 Nonlinearity nl (f) of the Boolean function f is the minimal Hamming distance from f to the affine 

functions: 
𝑛𝑛𝑛𝑛(𝑓𝑓) = min{𝑑𝑑(𝑓𝑓 ,  𝑔𝑔)| 𝑔𝑔 − 𝑎𝑎𝑓𝑓𝑓𝑓𝑎𝑎𝑛𝑛𝑎𝑎 𝑓𝑓𝑢𝑢𝑛𝑛𝑐𝑐𝑓𝑓𝑎𝑎𝑓𝑓𝑛𝑛 } 

The nonlinearity is at most 2𝑛𝑛−1 − 2𝑛𝑛/2−1 [7]. For cryptographic Boolean functions, nl (f) must be close 
to this maximum to prevent the system from attacks by linear approximations, correlation attacks, fast 
correlation attacks etc. [8]. 

A Boolean function f on 𝐹𝐹2
𝑛𝑛 is also uniquely determined by its Walsh transform. The Walsh transform 

𝑓𝑓𝑊𝑊 of  f  is an integer valued function defined by 
𝑓𝑓𝑤𝑤(𝑎𝑎) = ∑ (−1)𝑓𝑓(𝑥𝑥)+〈𝑎𝑎,𝑥𝑥〉

𝑥𝑥∈𝐹𝐹2
𝑛𝑛

= 2𝑛𝑛 − 2𝑑𝑑𝐻𝐻(𝑓𝑓, 𝑓𝑓𝑎𝑎) 

where 〈𝑎𝑎, 𝑥𝑥〉 is scalar product.  
Linearity Lin (f) of the Boolean function f is defined by using Walsh transform 

𝐿𝐿𝑎𝑎𝑛𝑛(𝑓𝑓) = max
𝑎𝑎∈𝐹𝐹2

𝑛𝑛|𝑓𝑓𝑤𝑤(𝑎𝑎)| ≥ 2𝑛𝑛 2⁄ . 
Linearity and nonlinearity of a Boolean function are connected by the equality 

 𝑛𝑛𝑛𝑛(𝑓𝑓) = 2𝑛𝑛−1 − 1
2 𝐿𝐿𝑎𝑎𝑛𝑛(𝑓𝑓). 

From mathematical point of view S-box (or vectorial Boolean function) is a function S, with values that 
are bit string, or mapping of n bits to m bits 

𝑆𝑆: 𝐹𝐹2
𝑛𝑛 → 𝐹𝐹2

𝑚𝑚. 
For any vector 𝑏𝑏 = (𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑚𝑚)  ∈ 𝐹𝐹2

𝑚𝑚  we consider the corresponding component function 𝑆𝑆𝑏𝑏: 𝐹𝐹2
𝑛𝑛 → 𝐹𝐹2 

defined by  
𝑆𝑆𝑏𝑏(𝑥𝑥) = 〈𝑏𝑏, 𝑆𝑆(𝑥𝑥)〉 = 𝑏𝑏1𝑆𝑆1(𝑥𝑥) + ⋯ + 𝑏𝑏𝑚𝑚𝑆𝑆𝑚𝑚(𝑥𝑥). 

 
2.1 Linear cryptanalysis (LC) 
Linearity is a measure for resistance against linear cryptanalysis [3]. We define linearity of S as 

𝐿𝐿𝑎𝑎𝑛𝑛(𝑆𝑆) = max
𝑎𝑎∈𝐹𝐹2

𝑛𝑛,𝑏𝑏∈𝐹𝐹2
𝑚𝑚,𝑏𝑏≠0

|𝑆𝑆𝑏𝑏
𝑤𝑤(𝑎𝑎)| =  max

𝑏𝑏∈𝐹𝐹2
𝑚𝑚,𝑏𝑏≠0

 𝐿𝐿𝑎𝑎𝑛𝑛(𝑆𝑆𝑏𝑏) 

In the theory of block ciphers related to linear cryptanalysis, the linear approximation table is studied. 
The linear approximation table is a 2𝑛𝑛 × 2𝑚𝑚 table whose entries are defined as 

𝐿𝐿𝑎𝑎,𝑏𝑏 = #{𝑥𝑥 ∈ 𝐹𝐹2
𝑛𝑛: 〈𝑏𝑏, 𝑆𝑆(𝑥𝑥)〉 = 〈𝑎𝑎, 𝑥𝑥〉} = 2𝑛𝑛 − 𝑑𝑑𝐻𝐻(𝑆𝑆𝑏𝑏, 𝑓𝑓𝑎𝑎) 

The probability of a linear approximation of a linear combination of output bits Sb by a linear combination 
of input bits we define as 

𝑝𝑝𝑎𝑎,𝑏𝑏 = 1
2𝑛𝑛 𝐿𝐿𝑎𝑎,𝑏𝑏. 

Linear probability bias ε is a correlation measure for this deviation from the probability ½ for which it is 
entirely uncorrelated: 

𝜀𝜀𝑎𝑎,𝑏𝑏 = |𝑝𝑝𝑎𝑎,𝑏𝑏 − 1
2| ≤ |𝐿𝐿𝑎𝑎𝑛𝑛(𝑆𝑆)

2𝑛𝑛+1 | 
The smaller is the linearity more resistant is the S-box against linear cryptanalysis. An open problem 

for given integers and m is to find nxm S-boxes with the smallest linearity.  
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For the 4-bit S-box G3 we calculate Linear Approximation Table (see Table 2). To do that, we wrote the 
program S-box_LATv0.2 in C++ programming language. The results from the calculations are saved in a 
text file. 

 
   Table 2. LAT for G3 

a\x 

00
00

 

00
01

 

00
10

 

00
11

 

01
00

 

01
01

 

01
10

 

01
11

 

10
00

 

10
01

 

10
10

 

10
11

 

11
00

 

11
01

 

11
10

 

11
11

 

0000 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0001 0 4 0 4 4 8 -4 0 0 4 8 -4 -4 0 -4 0 
0010 0 8 4 4 0 0 4 -4 0 -8 4 4 0 0 4 -4 
0011 0 4 4 0 4 0 0 4 0 4 -4 8 -4 -8 0 4 
0100 0 0 8 0 4 4 -4 4 4 -4 -4 -4 8 0 0 0 
0101 0 4 0 -4 0 4 8 4 4 0 -4 0 -4 8 -4 0 
0110 0 0 4 4 4 -4 8 0 -4 4 0 -8 0 0 4 4 
0111 0 -4 -4 8 0 4 4 8 -4 0 0 4 4 0 0 -4 
1000 0 0 0 0 -4 4 4 -4 8 8 0 0 4 -4 4 -4 
1001 0 4 0 4 0 -4 0 -4 0 4 0 4 8 4 -8 4 
1010 0 -8 4 4 4 -4 0 0 8 0 4 4 -4 4 0 0 
1011 0 4 4 0 -8 -4 -4 8 0 4 4 0 0 4 4 0 
1100 0 0 0 -8 8 0 0 0 -4 4 4 4 4 4 4 -4 
1101 0 4 -8 4 4 0 -4 0 4 0 -4 0 0 4 8 4 
1110 0 0 -4 -4 0 0 4 4 4 -4 8 0 4 -4 0 8 
1111 0 -4 4 0 -4 8 0 -4 -4 0 0 4 0 4 4 8 

 
Moreover, we wrote the program S-box_DDTv0.3 in C++ to calculate DDT (Difference Distribution 

Table) for the same 4-bit S-box G3 (see Table 3). The results from the calculations are saved in a text file.  

     
 
 
 
Table 3. DDT for G3 

a\x 

00
00

 

00
01

 

00
10

 

00
11

 

01
00

 

01
01

 

01
10

 

01
11

 

10
00

 

10
01

 

10
10

 

10
11

 

11
00

 

11
01

 

11
10

 

11
11

 

0000 16 - - - - - - - - - - - - - - - 
0001 - 2 2 2 4 - 2 - - 2 - - - - - 2 
0010 - 4 2 - - - - 2 - - - 2 2 2 - 2 
0011 - - 2 4 - 2 - - 2 2 - 2 - 2 - - 
0100 - - 2 - 2 2 4 2 2 - - - 2 - - - 
0101 - - 2 - 2 2 4 2 2 - - - 2 - - - 
0110 - - - 2 - 2 2 2 - - 2 - - 2 - 4 
0111 - 2 - - - 2 2 2 - 4 - 2 - - 2 - 
1000 - - - - 2 - - 2 2 2 - -  2 4 2 
1001 - 2 - - - - 2 - 2 2 2 - 2 4 - - 
1010 - 2 2 - - 4 - - 2 - 2 - - - 2 2 
1011 - 2 - 2 2 2 - - - - - - 4 2 2 - 
1100 - - - - 2 2 - - - 2 4 2 2 - - 2 
1101 - - - 2 - - 2 - 2 - - - 4 2 2 2 
1110 - 2 - 2 2 - - 2 4 - 2 2 - - - - 
1111 - - 2 2 - - - 4 - 2 2 - 2 - 2 - 

 
Using the program S-box_DDTv0.3, we also calculated 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑆𝑆) = max
𝑎𝑎≠0,  𝑏𝑏

𝐷𝐷𝑎𝑎,𝑏𝑏 = 4;   𝐷𝐷𝐷𝐷𝑎𝑎,𝑏𝑏 = 𝐷𝐷𝑎𝑎,𝑏𝑏
2𝑛𝑛 = 0, 1

4  𝑜𝑜𝑜𝑜 1
8 ;   BN =2. 

The mentioned program can be used to calculate the numbers in DDT, and the parameters, connected 
with this table, for bijective S-boxes with different lengths. We test the program for a resource computer 
consummation for S-boxes of different sizes (see Table 4). To generate the considered S-boxes, we use the 
program Generate S-box (written in C++). 



 51

Годишен зборник 2013
Yearbook  2013

Факултет за информатика, Универзитет „Гоце Делчев“ – Штип 
Faculty of Computer Science, Goce Delcev University – Stip

 
Table 4. Calculations for DDT in different S-boxes (S-box_DDTv0.3) 

Platform Intel(R) Core(TM)2 Duo CPU E8300 @2.83 GHz, 2 GB RAM (VS2013, C/C++) 
S-box Running Time: RAM: Size of the text file with the results: 
4x4-bit 0.002 sec … 3 KB 
6x6-bit 0.015 sec … 41 KB 
8x8-bit 0.155 sec 1-2MB 771 KB 
10x10-bit 3.619 sec 16 MB 14.5 MB 
12x12-bit 108.185 sec 80-160 MB 260MB 
13x13-bit 669.195 sec 400-500 MB *132 MB 
14x14-bit 12108.8 sec 550-1100 MB *525 MB 
Platform AMD Turion X2 Mobile TL-56 1.79 GHz, 2 GB RAM (VS2010, C/C++) 
S-box Running Time: RAM: Size save result text file from Calculation: 
4x4-bit 0.002 sec … 3 KB 
6x6-bit 0.046 sec … 41 KB 
8x8-bit 1 sec 1-2 MB 771 KB 
10x10-bit 24 sec 10-20 MB 14.5 MB 
12x12-bit 758 sec 85-170 MB 260MB 
13x13-bit 3920.91 sec 260 – 550MB *132 MB 
14x14-bit … … … 

 
* Without the values of S(x)⊕S (x⊕a), because the text file becomes very large with these values. 
 

4. Optimal 4 Bit S-Boxes 
A natural requirement for the S-boxes is their optimal resistance against linear and differential 

cryptanalyses. Unlike for higher dimensions the optimal values for Lin(S) and Diff(S) are known for the 4-bit 
S-boxes. More precisely, Lin(S) ≥ 8 and Diff(S) ≥ 4 (see [2]). More formally, as it is given in [2], the definition 
of an optimal 4-bit S-box is the following: 
Definition 1. Let S: 𝐹𝐹2

4 → 𝐹𝐹2
4 be an S-box. If S fulfills the following conditions we call S an optimal S-box. 

1. S is a bijection. 
2. Lin(S) = 8. 
3. Diff(S) = 4. 

When designing a block cipher it is important to know the set of S-boxes to choose from in order to get 
an optimal resistance against known attacks. Number of all permutations on 𝐹𝐹2

𝑛𝑛 is 2n and even for small 
dimensions n, it is crucial to reduce the number of S-boxes which have to be considered.  

It is well known (see for example [8]) that the values of Diff(S) and Lin(S) remain unchanged if we apply 
affine transformations in the domain or co-domain of S. In particular if we take an optimal S-box in the above 
sense and transform it in an affine way, we get another optimal S-box. That’s why we could find only 
representatives of the different equivalence classes. The definition for the affine equivalence is the following: 
Definition 2. The S-boxes 𝑆𝑆1, S2: 𝐹𝐹2

𝑛𝑛 → 𝐹𝐹2
𝑚𝑚  are affine equivalent if  

𝑆𝑆2(𝑥𝑥) = 𝐵𝐵 ∙ 𝑆𝑆1(𝐴𝐴 ∙ 𝑥𝑥 ⊕ 𝑎𝑎) ⊕ 𝑏𝑏 
where A and B are invertible 𝑛𝑛 × 𝑛𝑛 and 𝑚𝑚 × 𝑚𝑚 matrices, respectively, 𝑎𝑎 ∈ 𝐹𝐹2

𝑛𝑛, 𝑏𝑏 ∈ 𝐹𝐹2
𝑚𝑚.  

In [2] Leander and Poschmann proved that there are only 16 different optimal 4-bit S-boxes up to affine 
equivalence. In [9] Saarinen extends on this work by giving further properties of the optimal S-Box 
equivalence classes.  He defines two S-Boxes to be cryptanalytically equivalent if they are isomorphic up to 
the permutation of input and output bits and a XOR of a constant in the input and output. In [5] the authors 
consider all invertible 4-bit S-boxes and search for most efficient S-box in each equivalence class. 

 
5. Future Work 

This research is focused on the calculation of the most important parameters of given S-boxes, 
generation of optimal S-boxes and classification of all (or only the optimal) S-boxes of given size. We are 
going to improve our technique in two ways: 

 Optimization of the algorithms and search for new effective methods for computations. Our 
examples in this work are mainly for 4 × 4-bit S-boxes. The application of the used methods to 
calculate the parameter for large S-boxes is not feasible with a conventional computer and basic 
architecture.  

 Parallel programming.  
Modern processors offer more advanced techniques, such as parallelism, pipelining and instruction 
set extensions. Using these features for S-box implementations can result in other tradeoffs which 
could be investigated. Selection of a technology for parallel programming combined with different 
optimizing methods can ensure promising results. 
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6. Conclusion 
S-boxes form the nonlinear part in the block ciphers therefore they are very important for security of 

the ciphers. We must select S-Boxes carefully in order to be optimally resistant against known attacks.   
Here, we gave a brief classification of the S-boxes criteria. We considered some important parameters 

of the S-boxes and presented the programs for their calculation which we wrote in C++ programming 
language. We also added some test results on different S-boxes with the running time, the size of the used 
RAM, and the size of the text file with the results. There are different methods and algorithms to calculate 
these parameters. Here, we mentioned some of them and explained what we have used. 

We gave a concept for optimality of an S-box. Searching for optimal S-Boxes is a difficult task. There 
are many algorithms, using different representations of the optimal S-boxes, but still the problem remains. 

In Section 5 we mentioned different techniques which can be used to obtain promising results. Parallel 
programing together with different methods and optimizing techniques can offer promising results in 
calculations of the properties and finding optimal S-boxes. 
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