<u>THE QUALITY OF INSTITUTIONS AND ECONOMIC GROWTH (Panel regression</u> analysis for sample of CEE countries in time series 1992-2007 and 2008-2011)

Abstract

We have known that technological improvements, investment in physical and human capital are the main factors which determine economic growth and differences in level of income per capita among countries. But the question which economists try to answer is: why do some countries invest more than other in physical and human capital? And why are some countries so much more productive than others? Maybe the right answer to this question we should find in differences in institutional infrastructure. The main idea is that institutions and government policies determine the economic environment within which individuals accumulate skills, and firms accumulate capital and produce goods. In that context, econometric techniques have been applied on cross-country data for a sample of CEE region, just to investigate the influence of institutions on economic growth and level of income per capita before and during the global economic crisis period. However, testing the correlation and causality between institutions and growth involves the difficult issue how to measure the quality of institutions, taking in consideration that many international agencies and researchers have developed plenty of empirical indicators recently, which measure different institutional aspects.

Key words: economic growth, institutional infrastructure and quality of institutions, OLS Panel regression, crosscountry data, factor analysis.

Introduction

We have known that technological improvements, investment in physical and human capital are the main factors which determine economic growth and differences in level of income per capita among countries. But the question which economists try to answer is: why do some countries invest more than other in physical and human capital? And why are some countries so much more productive than others? Maybe the right answer of this question we should find in differences in institutional infrastructure. The main idea is that institutions and government policies determine the economic environment within which individuals accumulate skills, and firms accumulate capital and produce goods. In that context, panel econometric techniques have been applied on cross-country data for sample of CEE countries, just to investigate the influence of institutions on economic growth and level of income per capita in the long run and during the global economic crisis period. However, testing the correlation and causality between institutions and growth involving the difficult issue how to measure the quality of institutions. Many international agencies and researchers have developed plenty of empirical indicators recently, which measure different aspects such as financial stability, quality of government regulations, democracy, quality of laws and courts, corruption and many others. One of the key challenges confronting us in this empirical study, having in mine the large number of government and institutional indicators, is how to combine this set of indicators into a one dimension with a clearcut interpretation of quality of institutions and then analyze his influence on income per capita and economic growth. The most widely used approach to construct composite variables is to select relevant indicators and weigh them together using predetermined equal weights.

Theoretical model of institutions, capital and economic growth

In the economic literature, especially in theory of growth there are many attempts which have been done to incorporate the influence of institution in growth models. In addition, we will try to do this work by interpreting the model of growth with quality of institutions to see how institution framework is correlate with economic performance in long run. In that context, we start our analysis with aggregate production function which describes how the inputs (physical and human capital, labor and technology) are combined to produce output.¹

$$Y_t = A_t K_t^{\alpha} H_t^{\beta} L_t^{1-\alpha-\beta}$$
(1)

The equation of production function can write in per capita form

$$\frac{Y_t}{L_t} = \frac{K_t^{\alpha}}{L_t} \frac{H_t^{\beta}}{L_t} \frac{A_t L_t^{1-\alpha-\beta}}{L_t}$$
(2)

$$y_t = A_t k_t^{\alpha} h^{\beta} \tag{3}$$

Traditional macroeconomic growth models do not include the influence of institutional quality as a factor of economic growth. These models implicitly assume an underlying set of good institutions. The fact that institutions have important role in growth process, the economists try to implement the institutional quality in growth models.

$$A_{t} = A_{0}k_{t}^{\delta_{1}(h-h^{*})}h_{t}^{\delta_{2}(h-h^{*})}$$
(4)

Substituting the equation (3) into equation of production function per worker, we get:

$$y_{t} = A_{0}k_{t}^{\delta_{1}(ln-ln^{*})}h_{t}^{\delta_{2}(ln-ln^{*})}k_{t}^{\alpha}h_{t}^{\beta}$$
(5)

1

² The equation (1) we can write in this terms: $Y_t = K_t^{\alpha} H_t^{\beta} (A_t L_t^{1-\alpha-\beta})$

Rewriting this equation we get:

$$y_{t} = A_{0}k_{t}^{\alpha+\delta_{1}(ln-ln^{*})}h_{t}^{\beta+\delta_{2}(ln-ln^{*})}$$
(6)

To study the dynamic of output per capita, we will use a simple *mathematical trick* that economists often used in the study of growth.³ The mathematical trick is to "take logs and then derivatives".

If we take logs of equation (6), we obtain:

$$\log y_t = \log A_0 + \left[\alpha + \delta_1 (In - In^*)\right] \log k_t + \left[\beta + \delta_2 (In - In^*)\right] \log h_t$$
(6)

Derivatives regarding time t, we obtain following form:

$$\frac{d\log y_t}{dt} = \frac{d\log A_0}{dt} + \left[\alpha + \delta_1(In - In^*)\right] \frac{d\log k_t}{dt} + \left[\beta + \delta_2(In - In^*)\right] \frac{d\log h_t}{dt}$$
(7)

As we can see, the equation (8), show the growth rate of output per capita:

$$\frac{\Delta y_t}{y_t} = \frac{\Delta A_0}{A_0} + \left[\alpha + \delta_1 (In - In^*)\right] \frac{\Delta k_t}{k_t} + \left[\beta + \delta_2 (In - In^*)\right] \frac{\Delta h_t}{h_t}$$
(8)

Rewriting equation (8) we get following form of growth rate of output per capita:

$$\frac{\Delta y_t}{y_t} = \frac{\Delta A_0}{A_0} + \left[(\alpha - \delta_1 In^*) + \delta_1 In \right] \frac{\Delta k_t}{k_t} + \left[(\beta - \delta_2 In^*) + \delta_2 In \right] \frac{\Delta h_t}{h_t}$$
(9)

If
$$y(t) = \log x(t)$$
, than, $\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt} = \frac{1}{x}\Delta x = \frac{\Delta x}{x}$

³ Mathematical notes: The theory of growth uses some properties of natural logarithms. One of that properties is: The statement regarding the timing of the logarithms of a variable, gives the growth rate of that variable:

⁴ Where symbol, Δ , denotes changes of parameters.

If we assume that: $\varphi_1 = (\alpha - \delta_1 In^*)$; $\varphi_2 = (\beta - \delta_2 In^*)$ and $\alpha_0 = \Delta A_0$, and adding an error term \mathcal{E}_t , we get final equation of growth rate of output per capita:

$$\frac{\Delta y_t}{y_v} = \alpha_0 + \varphi_1 \frac{\Delta k_t}{k_t} + \delta_1 In \frac{\Delta k_t}{k_t} + \varphi_2 \frac{\Delta h_t}{h_t} + \delta_2 In \frac{\Delta h_t}{h_t} + \varepsilon_t$$
(10)

The final basic equation that we got in our theoretical model can use to test the impact of institution on the growth by the influence of institution's quality on the productivity of physical and human capital. In addition, we explain the coefficient estimates for $\varphi_1, \varphi_2, \delta_1, \delta_2$. The coefficient φ_1 and φ_2 measure the return to physical and human capital investments (the productivity of capital investments) in a country with the worst possible institutional quality, while coefficient δ_1 and δ_2 showing an increasing return to these capital investments as the country's institutional quality improves to the ideal level for economy based of market foundations.

OLS Panel regression analysis of income per capita and institutional quality for CEE courtiers (1993-2007)

Variable	Variable description	Obs	Mean	Std. Dev.	Min	Max
LGDP	Log GDP per capita, US\$	124	8.088048	0.7498555	6.096838	9.511979
Institution	Institution quality (Index of corruption, political rights and civil liabilities)	122	0.5344152	0.7152418	-2.38324	1.20147
	Innovation capacity					
	(Royal payments, GERD				-	-
Innovation	and Journal articles)	120	-1.892837	0.3460532	2.696032	1.173705
	Human capital (Gross enrolment in primary, secondary and tertiary education and education					
Human capital	spending)	135	3.865763	0.1192445	3.570382	4.080292
Export demand	Export demand for goods and services, US\$	135	18.14359	1.590651	13.92526	21.09715
Bank credit	Bank credit to private sector, as % of GDP	131	3.052384	0.71494	1.252763	4.484921

	Log of GDP	Institution quality	Innovation capacity	Human capital	Bank credit	Investment	FDI inflow	Export	Openness	Inflation
Log of GDP	1									
Institution quality	0.5959	1								
Innovation capacity	0.6068	0.3561	1							
Human capital	0.6254	0.7871	0.1672	1						
Bank credit	0.8022	0.3884	0.5361	0.5263	1					
Investment	0.6469	0.3539	0.2345	0.3811	0.5676	1				
Remittances	0.4147	0.1735	0.087	0.4297	0.5574	0.3503				
Net FDI inflow	0.5358	0.2449	0.3007	0.1597	0.3474	0.2567	1			
Export	0.3373	-0.0273	0.22	-0.0378	0.2057	0.0122	0.8303	1		
Openness	0.3822	0.6002	0.2897	0.5854	0.4189	0.2911	0.0852	0.3147	1	
Inflation	-0.6122	-0.4973	-0.2874	-0.6209	0.4328	-0.4237	0.1163	0.0492	-0.3607	1

DEPENDENT VARIABLES:	OLS Panel	OLS Panel	Random- effects GLS	Fixed-effects (within)
Log GDP per capita	regression	regression	regression	regression
INDEPENDENT VARIABLES				

Institution quality	0.157	0.192**	0.160**	0.0130**
	(0.152)	(0.0795)	(0.009)	(0.030)
Innovation capacity	0.642***			0.124**
	(0.175)			(0.236)
Human capital	2.672***	1.368***	2.709**	1.149**
	(0.774)	(0.502)	(0.000)	(0.061)
Export demand	0.178***	0.142***	0.240**	0.534**
	(0.0346)	(0.0244)	(0.000)	(0.000)
Bank credit to private sector	0.227**	0.142***	0.078**	
	(0.0911)	(0.0635)	(0.125)	
Investment in physical capital		1.211***	0.709**	0.523**
		(0.125)	(0.000)	(0.000)
Constant	-5.155*	-4.369**	-9.303081**	-7.709**
	(2.762)	(1.947)	(0.000)	(0.000)
Observations	99	108	108	101
R-squared	0.696	0.800	0.715	0.474
Standard errors in parentheses				
*** p<0.01. ** p<0.05. * p<0.1				

OLS Panel regression analysis of economic growth per capita and institutional quality for CEE <u>courtiers (1993-2007)</u>

	Growth		Human			Institution	
	rate	Investment	capital	Innovation	Competitive	quality	Infrastruc.
Growth rate	1						
Investment	0.2744	1					
Human capital	0.3334	-0.0572	1				
Innovation	0.3272	0.4098	0.2814	1			
Competitiveness	0.4654	0.5401	0.4552	0.568	1		
Institution							
quality	0.2756	0.1267	0.5393	0.1298	0.369	1	
Infrastructure	0.4427	0.3721	0.5391	0.7477	0.6456	0.3606	1

The results from empirical study for economic growth per capita and institutional quality that we have partly done by using data for group of CEE countries in modified Panel econometric methods and OLS regression analysis show two controversial results. First, regression analysis which we use to estimate the first econometric model shows strong positive statistical correlation between quality of institutions and economic growth in time series of 1993-2007 for sample of CEE countries.

			Random-	Random-
DEPENDENT VARIABLES:	OLS Panel	OLS Panel	effects GLS	effects GLS
ECONOMIC GROWTH	regression	regression	regression	regression
INDEPENDENT VARIABLES				
Institution quality	0.188***	0.196**	0.110**	0.106*
	(0.215)	(0.172)	(0.0552)	(0.0546)
Innovation capacity	0.242**	0.265**		
	(0.029)	(0.029)		
Human capital	1.642**	0.761**	2.148***	0.386***
	(0.002)	(0.002)	(0.304)	(0.122)
Infrastructure				1.024**
				(0.495)
Economic competitiveness		0.427**		0.250***
		(0.000)		(0.0323)
Investment in physical capital	0.138**		0.239***	
	(0.003)		(0.032)	
Trust			0.594***	0.205
			(0.184)	(0.213)
Constant	-3.946**	0.698**	-1.930	2.324
	(0.108)	(0.670)	(1.223)	(1.949)
Observations	214	229	378	373
R-squared	0.504	0.591	0.56	0.54

Standard errors in parentheses

The quality of institutions have positive effect and influence of economic performance during transition and post-transition period for all sample of countries, that means, those countries which have implemented growth-promoting institutions (high level of transition progress to market economy, successful results in integration process to EU and adaptation to EU-compatible institutions, high quality of government policy making) have high level of GDP per capita and sustainable economic growth in long run.

On the other hand, our second regression model that we have estimated using different set of variables to represent the quality of institutions (WBGI, EBRD Index, EU integration), for the time period (2008-2011), shows negative correlation between institutions and economic growth. The logical explanation of the negative influence of institutional quality we should find out in fact that countries in CEE which have made the most significant institutional progress by integration to EU are more vulnerable to the crisis. This sensitivity and vulnerability to the crisis, primarily came from the higher degree of openness to the transmission effects through financial flows and falling export demand. But, at the same time they have better chance to overcome the crisis and better opportunities for recovering their economies, since private sector in those countries operate within a more supportive and market oriented institutional environment.⁵

Figure 1. Average economic growth and Quality of institutions (2008-2011)

⁵ Will Bartlett and Ivana Prica (2011): The variable impact of the global economic crisis in South East Europe, London School of Economics.

LGDP		Sec.		M	e all and the
	instit				
		innovation			- Line
	i		humancapital	Service Services	
		- Julia	· · · · · · · · · · · · · · · · · · ·	export	
		~2.5×10		<u>; 16</u>	bank

Ramsey RESET Ho: mc	test using po odel has no om F(3, 370) Prob > F	wers of itted = =	f the fitted w variables 1.42 0.2364	values o	f growthrate		
Source	SS	df	MS		Number of obs	= 378	
Model Residual	151.484139 179.602308	2 375	75.7420694 .478939488		Prob > F R-squared	= 0.0000 = 0.4575	
 Total	331.086447	377	.878213386		Root MSE	= 0.4346 = .69205	
growthrate	Coef.	Std.	Err. t	P> t	[95% Conf.	Interval]	
_hat _hatsq _cons	1.608009 0562156 -1.608843	.424 .0389 1.163	873 3.78 352 -1.44 243 -1.38	0.000 0.150 0.167	.7725771 1327743 -3.896139	2.443441 .0203432 .678453	

A kernel density plot produces a kind of histogram for normal distribution of the residuals. Here residuals seem to follow quite a normal distribution.

Rvfplot scatter plotting residuals vs. predicted values (Yhat) which means that residuals seem to slightly expand at higher levels of Yhat.

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of LGDP
chi2(1) = 2.88
Prob > chi2 = 0.0895
```

This is the Breusch-Pagan test for heteroskedasticity. The null hypothesis is that residuals are homoskedastic. Here we accept the null and concluded that residuals are homoskedastic. (the minimum threshold p-value is 0.05)

Variable		VIF	1/VIF
	-+		
humancapital	T	2.66	0.376304
instit	I	2.61	0.383801
bank	T	1.87	0.534089
export	T	1.34	0.746060
investment	1	1.12	0.891900
	-+		
Mean VIF	I	1.92	

A vif> 10 or a 1/vif< 0.10 indicates that there is multicolinearity problem in regression model. One of the reason why we use principle-component analysis in our regression is to avoid the problem of multicolinearity. Neither of independent variables in the regression is nor causal correlate each other, that is signal for not multicolinearity bias.

Appendix1 Factor analysis of Innovation capacity: Royal payments, number of patents, journal articles and expenditure of research and development.

Factor analysis/co Method: princ: Rotation: (uni	orrelation ipal-component : rotated)	Number of obs Retained fact Number of par	s = 323 tors = 1 rams = 4	
Factor	Eigenvalue	Difference	Proportion	Cumulative
Factor1	2.50990	1.57707	0.6275	0.6275
Factor2	0.93283	0.65074	0.2332	0.8607
Factor3	0.28209	0.00691	0.0705	0.9312
Factor4	0.27518	•	0.0688	1.0000
LR test: index	pendent vs. sati	urated: chi2(6)	= 547.07 Prob	

Factor loadings (pattern matrix) and unique variances

Variable		Factor1		Uniqueness
dilroyag	-	0.3691		0.8638
di6patecap		0.8786		0.2281
di7articap		0.8887		0.2103
di16merdt		0.9011		0.1880

Factor analysis/co Method: princ Rotation: orth	orrelation ipal-component facto nogonal varimax (Kai	Number of obs Retained fact Number of par	ors = ams =	323 1 4	
Factor	Variance Dif	ference	Proportion	Cumulative	
Factor1	2.50990	•	0.6275	0.6275	
LR test: indep	pendent vs. saturate	ed: chi2(6)	= 547.07 Prob	>chi2 = 0.00	000

Rotated factor loadings (pattern matrix) and unique variances

Variable	Factor1	Uniqueness
dilroyag di6patecap di7articap di16merdt	0.3691 0.8786 0.8887 0.9011	0.8638 0.2281 0.2103 0.1880

Factor rotation matrix

		Factor1
Factor1		1.0000

Appendix2 Factor analysis of human capital: gross enrolment in primary, secondary and tertiary education, education spending and number of teacher per student.

Factor analysis/ Method: prin Rotation: (u	cor: cipa nroi	relation al factors tated)	Number of obs Retained fact Number of par	s = 356 cors = 3 cams = 15	
Factor	I	Eigenvalue	Difference	Proportion	Cumulative
	-+				
Factor1		2.42104	2.11148	1.0396	1.0396
Factor2		0.30956	0.24784	0.1329	1.1725
Factor3	1	0.06172	0.18163	0.0265	1.1990
Factor4	Í.	-0.11990	0.00644	-0.0515	1.1475
Factor5	i	-0.12634	0.09082	-0.0542	1.0932
Factor6	i	-0.21716	•	-0.0932	1.0000
LR test: ind	epei	ndent vs. satı		= 703.63 Prob	>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

Variable		Factor1	Factor2	Factor3		Uniqueness
	+ -				+	
eslenrop		0.1462	0.4204	0.0060		0.8019
es2enros	1	0.8465	-0.0026	-0.0880		0.2756
es3enrot	1	0.7256	-0.0318	0.1010		0.4623
es10schom	1	0.5978	0.2323	0.0967		0.5793
es12educe	1	0.4284	-0.2684	0.1218		0.7296
es14teacr		0.7846	-0.0765	-0.1398		0.3590

Factor analysis/correlation	Number of obs	a = 356
Method: principal factors	Retained fact	ors = 3
Rotation: orthogonal varimax (Kaiser off)	Number of par	mams = 15
Factor Variance Difference	Proportion	Cumulative
Factor1 2.32436 1.99452	0.9980	0.9980
Factor2 0.32983 0.19169	0.1416	1.1397
Factor3 0.13814 .	0.0593	1.1990

Rotated factor loadings (pattern matrix) and unique variances

Variable	Factor1	Factor2	Factor3	I	Uniqueness
eslenrop es2enros es3enrot es10schom es12educe es14teacr	0.1078 0.8454 0.6940 0.5482 0.4185 0.8005	0.4292 0.0789 0.0685 0.3118 -0.1935 -0.0092	-0.0479 0.0588 0.2267 0.1516 0.2406 0.0120	-+- 	0.8019 0.2756 0.4623 0.5793 0.7296 0.3590

Factor rotation matrix

| Factor1 Factor2 Factor3

	+-			
Factor1	I	0.9789	0.1138	0.1695
Factor2		-0.0815	0.9791	-0.1866
Factor3		-0.1872	0.1688	0.9677

Appendix3 Factor analysis of the quality of institutions: Index of corruption, political rights, civic freedom and index of democracy.

Factor analysis/cc	orrelation		Number of obs	s = 356
Method: princi	pal factors		Retained fact	cors = 2
Rotation: (unr	cotated)		Number of par	cams = 6
Factor	Eigenvalue	Difference	Proportion	Cumulative
Factor1	2.06135	1.98990	1.0618	1.0618
Factor2	0.07145	0.11807	0.0368	1.0986
Factor3	-0.04662	0.09820	-0.0240	1.0746
Factor4	-0.14482		-0.0746	1.0000
LR test: indep	endent vs. satu		= 633.89 Prob	>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness pf20demoa 0.8514 0.0896 0.2670 pf23legic 0.2500 0.1811 0.9047 pf1corri 0.6588 -0.1749 0.5354 pf12polir 0.9165 -0.0070 0.1601				
pf20demoa 0.8514 0.0896 0.2670 pf23legic 0.2500 0.1811 0.9047 pf1corri 0.6588 -0.1749 0.5354 pf12polir 0.9165 -0.0070 0.1601	Variable	Factor1	Factor2	Uniqueness
	pf20demoa pf23legic pf1corri pf12polir	0.8514 0.2500 0.6588 0.9165	0.0896 0.1811 -0.1749 -0.0070	0.2670 0.9047 0.5354 0.1601

Factor analysis/o Method: prino Rotation: ort	correlation cipal factor thogonal var	s imax (Kaiser	off)	Number of Retained f Number of	obs Tactors params	= 356 = 2 = 6
Factor	Varia	nce Differ	ence	Proportio	on Cum	ulative
Factor1 Factor2	2.06 0.07	098 1.9 182	8916 •	1.061 0.037	16 70	1.0616 1.0986
LR test: inde	ependent vs.	saturated:	chi2(6) =	 = 633.89 E	Prob>chi	2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable		Factor1	Factor2		Uniqueness
pf20demoa		0.8526	0.0780	-	0.2670
pf23legic		0.2525	0.1777		0.9047
pf1corri		0.6563	-0.1839		0.5354
pf12polir		0.9163	-0.0195		0.1601

Factor rotation matrix

Factor1 0.9999 -0.0137 Factor2 0.0137 0.9999			Factor1	Factor2	
	Factor1 Factor2		0.9999 0.0137	-0.0137 0.9999	

Appendix4 Factor analysis of economic competitiveness: bank credit to private sector and openness to trade.

actor analysis/correlation			Number of obs = 3		
Method: principal factors			Retained factors =		
Rotation: (unrotated)			Number of params =		
 Factor	Eigenvalue	Difference	Proportion	Cumulative	
Factor1	0.19642	0.33629	3.4736	3.4736	
Factor2	-0.13987		-2.4736	1.0000	
LR test: indep	endent vs. sati	urated: chi2(1)	= 10.17 Pro	 b>chi2 = 0.0014	

Factor loadings (pattern matrix) and unique variances

Variable		Factor1		Uniqueness
ec14credg ec16openi		0.3134 0.3134		0.9018 0.9018

tor analysis/corr Method: principa Rotation: orthog	elation 1 factors 70nal varimax	(Kaiser off)	Number of obs Retained fact Number of par	a = 356 cors = 1 rams = 1
Factor	Variance	Difference	Proportion	Cumulative
Factor1	0.19642	•	3.4736	3.4736
LR test: indeper	dent vs. satı		= 10.17 Prob	>chi2 = 0.0014

Rotated factor loadings (pattern matrix) and unique variances

Variable	Factor1	Uniqueness
ecl4credg	0.3134	0.9018
ecl6openi	0.3134	0.9018

Factor rotation matrix

 		Factor1
 Factor1	+-	1.0000