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Abstract. The Galerkin method is one of the most used methods for finding numerical solutions of 

ordinary and partial differential equations. Its simplicity makes it suitable for many applications. In 

this paper we show that the wavelet-Galerkin method is an improvement over the standard Galerkin 

method for ordinary differential equations.  
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1. Introduction 

The concepts of wavelet theory were provided by Meyer, Mallat, Daubechies, and many 

others, [4], [8], [10]. Since the beginning, the number of applications where wavelets have been 

used has exploded. In areas such as time-series analysis, approximation theory and numerical 

solutions of differential equations, wavelets are recognized as powerful weapons not just tools, [1], 

[2], [3], [7], [11], [12], [13].  

In general it is not always possible to obtain exact solution of an arbitrary differential 

equation. This necessitates either to go for discretization of differential equations leading to 
numerical (approximate) solutions, or their qualitative study which is concerned with deduction of 

important properties of the solutions without actually solving them. In the early nineties, scientists 
were very optimistic because it seemed that many nice properties of wavelets can be directly 
applied and would automatically leads to efficient numerical method for solving differential 

equations. The reason for this optimism was the fact that many nonlinear partial differential 
equations (PDEs) have solution containing local phenomena and interactions between several 

scales. Such solutions can be well represented in wavelet bases because of its nice properties such 
as compact support (locality in time domain) and vanishing moments (locality in frequency 
domain).  

The Galerkin method is one of the best known methods for finding numerical solutions of 
ordinary and partial differential equations. Its simplicity makes it perfect for many applications. The 

wavelet-Galerkin method is an improvement over the standard Galerkin method by using a 
compactly supported orthogonal functional basis, [2], [11], [12], [13]. The translates of a wavelet 
for all dilations form an unconditional orthonormal basis of )(2 RL   and the translates of a scaling 

function for all dilations form an unconditional orthonormal bases for )(2 RLV j  , which is a great 

improvement over the standard polynomial basis or a trigonometric basis which not necessary have 

to be unconditional. 
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The aim of this article is to throw some light on this aspect of wavelet analysis for numerical 
and qualitative analysis of ordinary differential equations. Section 2 is of preliminary character; we 
describe the spaces of functions that we use throughout this paper, we also recall some basic 

wavelet tools such as multiresolution analysis (MRA) and define the condition number of a matrix. 
In Section 3 we describe the classical Galerkin method for numerical solving of Sturm-Liouville 

differential equation which comes down to solve a linear system of equations, or equivalently, a 

matrix equation YAX  .  For numerical purposes, there are two properties that we would like the 

matrix A  to have. First, we would like A  to have a small condition number, to obtain stability of 
the solution under small perturbations in the data. Second, for performing with A  quickly, we 

would like A  to be sparse, which means that A  should have a high proportion of entries that are 0. 
In this paper we show that the two desire properties of matrix A  can be achieved if we use the 
wavelets as basis vectors. 

2. Preliminaries and Notations 

2.1. Spaces of functions.  )(2 RL  is a Hilbert space of square integrable functions on the real line 

with the inner product 
R

dttgtfgf )()(, , where )(tg  is a complex conjugate of )(tg . The 

Fourier transform of a function )(2 RLf   is given with 






 .)()(ˆ dtetff ti  

The Hilbert space of square integrable functions on [0,1],  with the inner product 


1

0

)()(, dttgtfgf , 

is denoted by ])1,0([2L . ])1,0([2C  is the space of functions on ]1,0[  with continuous derivatives up 

to order 2. 

2.2. The condition number of a matrix. The methods for numerically solving linear ordinary 

differential equation often come down to solving a linear system of equations, or equivalently, the 

matrix equation YAX  . Theoretically, such a system is well understood: for a square matrix A , 

there exists a unique solution X  for every Y  if and only if A  is an invertible matrix. However, in 

applications there are further issues that are of crucial importance. It is often observed that for two 

close values of Y , for example 
'Y  and ''Y , the appropriate obtained solutions 'X  and ''X  are far 

apart. Such a linear system is called badly conditioned. In this situation, small errors in data Y  can 

lead to large error in the solution X . A measure of the stability of the linear system YAX   under 

perturbation of the data Y  is a condition number of a matrix A . 

Let A  be a nn  matrix. The operator norm, or just the norm of A  is defined by 

,sup
z

Az
A                (2.1) 

where the supremum is taken over all nonzero complex vectors z  in 
nC . 

Let A  be an invertible nn  matrix. A condition number )(
#

AC  of A , is defined by 



1

#
 )(  AAAC , 

where 1A  is the inverse matrix for А.  It is clear that 1)(
#

AC . It is known that if A  is normal 

invertible matrix then 

min

max

#
)(




AC                       (2.2) 

where }A of eigenvaluean  is :max{
max

  and }A of eigenvaluean  is :min{
min

  . If A  

is unitary matrix, then 1)(# AC . For irregular matrix A, )(# AC . 

In applications, a small condition number (i.e. near 1) is desirable. In case when )(
#

AC  is high, the 

system YAX   can be replaced with the equivalent system BYBAX  , where B  is a 

preconditioning matrix such that ).()( ## ACBAC   In theory this is always possible, i.e. for an 

invertible matrix A , 
1 AB . 

2.3. Wavelets and Multiresolution analysis (MRA). Let 
ba, , R ba  ,0  be a family of functions 

defined as translations (or shifting) by factor b  and dilatation (or scaling) by factor a of the function 

)(2 RL  








 


a

bt

a
tba 

1
)(, . 

The function )(2 RL  (called a wavelet or mother wavelet) is assumed to satisfy the admissibility 

condition 






 



 dC

2
)(ˆ

, 

which implies that  

    




 0)()0(ˆ dtt .             (2.3) 

One can prove that, if 




 0)( dtt  and 




 dttt )()1( 


 for some 0 , then C , [1]. 

In most situations, it is usefully to restrict   to be well localized both in time and frequency 

domains. For time localization, )(t  and its derivatives must decay very rapidly, while for 

frequency localization, )(ˆ   must decay sufficiently fast as   and )(ˆ   must become a flat 

in the neighborhood of 0. The flatness is associated with the number of vanishing moments of )(t  

since 

0)0(ˆ0)( )( 




kk dttt                (2.4) 

for k = 0, 1, …, n. It means that larger number of vanishing moments more is the flatness   is 

small. 
 The notion of multiresolution analysis (MRA) was introduced in 1988/89 by Mallat and 

Meyer as a natural approach to the wavelet orthonormal basis. One can easily obtain a wavelet basis 
associated to the particular multiresolution approximation as follows.  

 A multiresolution analysis (MRA) of space )(2 RL  consists of a sequence of closed 

subspaces 

jjV }{  (called approximation spaces) with the following properties: 

1. ;,1 Z  jVV jj  



2. )(2

j

R
Z

LV j 


 ;  0  
j




jV
Z

 ; 

3. jVtf )(   1)2(  jVtf ; 

4.  jVtf )(   jVktf  )( , Zk ; 

5. There exists a function   (called scaling function or father wavelet) such that       

Z kktt jj

kj ),2(2)( 2/

,  constitute orthonormal basis for corresponding subspace 
j

V .  

 Let )(2 RL  be compactly supported scaling function of MRA. Then  






 0)( dtt ,              (2.5) 

and   satisfies the following dilatation equation 





Zk

k ktat )2(2)(                    (2.6) 

where ka  are real coefficients and 0ka  for only finitely many Zk  (the number of nonzero 

coefficients 
k

a  in the series (2.6) is denoted by L). Since Z kjktt jj

kj ,),2(2)( 2/

,   are 

orthonormal in )(2 RL , we have 






 nkdtktnt ,)()(                     (2.7) 

where nk ,  is the Kronecker delta function such that 0, nk  for kn   and 1, nk  for kn  . 

If )(2 RL  be compactly supported scaling function of MRA, one can construct the wavelet   

such that Z kjktt jj

kj ,),2(2)( 2/

,   constitute an orthonormal basis for )(2 RL . It can be 

shown [4], that if ̂  and ̂  are the Fourier transforms of the scaling function and its corresponding 

wavelet, then, the following relation holds 

       2/
2/1

22

)(ˆ)2/(ˆ)(ˆ  ie




  ,                 (2.8) 

or equivalently,  




 
Zk

k

k ktat )2()1(2)( 1  .           (2.9) 

 
 The simplest example of MRA is the Haar multiresolution analysis. In this case 

 

                             .
otherwise,0  

10,1
)(



 


t

t                                  (2.10) 

 
Consequently to (2.8), we obtain that )12()2()(  ttt  , that is 

           





















otherwise     ,0  

1
2

1
   ,1

2

1
0    ,1   

)( t

t

t
.                                            (2.11) 

The Haar wavelet )(t is developed by Alfred Haar in 1910, long before anyone began speaking of 

wavelets.  



3. Wavelet-Galerkin method for Sturm-Liouville equation 

 
3.1. Sturm-Liouville equation. We consider the class of ordinary differential equations (known as 

Sturm-Liouville equations) of the form 

10  ),()()()()( 







 ttftutb

dt

du
ta

dt

d
tLu ,           (3.1) 

with Dirichlet boundary conditions 

0)1()0(  uu .             (3.2) 

Let )(ta , )(tb  and )(tf  be a real-valued functions, such that )(tf  and )(tb  are continuous 

functions and )(ta  has a continuous derivative on ]1,0[ . Note that L may be differential operator 

with variable coefficient because )(ta  and )(tb  are not necessarily constants. We assume that the 

operator L is uniformly elliptic, which means that there exist constants 01 C , 02 C  and 03 C  

such that 

21 )(0 CtaC   and 3)(0 Ctb   for all ]1,0[t .                        (3.3) 

By the theory of ordinary differential equations, it is known that there is a unique function u 
satisfying equation (3.1) and the boundary conditions (3.2).  

 
3.2. Galerkin method for ordinary differential equations. For the Galerkin method [9], [12], we 

suppose that }{ jv  is a complete orthonormal system (orthonormal basis) for ])1,0([2L , and that 

every jv  is ])1,0([2C  function that satisfies 

0)1()0(  jj vv .      

We select some finite set   of indices j  and consider the subspace 

},{  jvspanS j , 

i.e. the set of all finite linear combination of the elements }{ jv , j . 

We look for an approximation su  of the exact solution u of the equation (3.1) in the form 

   Svxu
k

kks 


,                  (3.4) 

where the coefficients kxk ,  are unknown. Our criterion for determining the coefficients kx  is 

that su  should behave like the true solution u  on the subspace S , i.e. 

jjs vfvLu ,,   , j .                       (3.5) 

If we substitute equation (3.4) in equation (3.5) we obtain 

jk

k

jk vfxvLv ,, 


, j .                       (3.6) 

Let X  denote the vector kkx )(  and let Y  be the vector kky )(  where kk vfy , . Let 

 kjkjaA ,, ][  where jkkj vLva ,,  . Thus, (3.6) is a linear system of equations  

jk

k

kj yxa 


, j              (3.7) 

or, 
YAX  .              (3.8) 



For each subset   we obtain an approximation Sus   to the true solution u , by solving the linear 

system (3.8)  for X  and then we determine 
su  by equation (3.4).  

We expect that as we increase our set   in some systematic way, our approximations 
su  

should converge to the true solution u . Now, our main concern is the nature of the linear system, 

resulting from the choice of wavelet basis as opposed to some other basis, for example, Fourier 
basis. For numerical purposes, there are two properties that we would like the matrix A  in the 
linear system (3.8) to have. First, we would like A  to have a small condition number, to obtain 

stability of the solution under small perturbations in the data. Second, for performing with A  
quickly, we would like A  to be sparse, which means that A  should have a high proportion of 

entries that are 0. In the rest of the paper we will show that the two desire properties of matrix A  
can be achieved if we use the wavelets as basis vectors. 
 

3.3. Wavelet-Galerkin method for ordinary differential equations . As we emphasized, the 

family of wavelets Z kjktt jj

kj ,),2(2)( 2/

,   constitute an orthonormal basis for )(2 RL . We 

assume the possibility of modifying the wavelet system for )(2 RL , so as to obtain a complete 

orthonormal system 
),(, }{ kjkj  for ])1,0([2L . The set   is a certain subset of ZZ  that we do not 

specify. The functions  
kj ,  are not exactly the same functions as in a wavelet basis for )(2 RL , but 

they are similar. In particular, 
kj ,  has a scale of about j2 , and is concentrated near the point 

kj2 , and 
kj ,  is 0 outside an interval centered at kj2  of length proportional to j2 . Wavelets 

concentrated well into the interior of ]1,0[  are nearly the same as usual wavelets, but those 

concentrated near the boundary points are substantially modified. After the modifications, 

 ),( kj , 
kj ,  should be 2C  function and satisfy the boundary conditions  

0)1()0( ,,  kjkj  . 

Now, we rewrite the equations (3.4) and (3.6) using the fact that the wavelets are indexed by two 
integers, in the form 





),(

,,

kj

kjkjs xu  , 

and  

mlkj

kj

mlkj fxL ,,

),(

,, ,, 





,  ),( ml .                     (3.9) 

We can still regard this, as a matrix equation YAX  , where the vectors  ),(, )( kjkjxX  and 

 ),(, )( kjkjyY , 
kjkj fy ,, ,  are indexed by pairs ),( kj , and  ),();,(,;, ][ kjmlkjmlaA , 

mlkjkjml La ,,,;, , . The pairs ),( ml  and ),( kj  represent row and column of A  respectively. 

 

Next, we will prove that if the matrix A  does not have a low condition number or is not 

sparse, then the system YAX   can be replaced with the equivalent system VMZ  , for which 

the new matrix M  has the desire properties, i.e. M  is sparse matrix and has smaller condition 

number than A. 

Indeed, we define matrix  ),(),,(,;, ][ kjmlkjmlmM  by 

           
11  ADDM ,            (3.10) 

where 



),(),,(,;,

][
kjmlkjml

dD , 












),(),(     ,0  

),(),(    ,2 
,;,

kjml

kjml
d

j

kjml
 

is diagonal matrix. 

Since jnD 2)det(  , its inverse matrix 
1D  is 

 



































nn

nj

nj

nj

jn
adjD

D
D

)1(

)1(

)1(

1

2    0    0   0

0    0  2   0

0    0   0  2

2

1

)det(

1









 

 

                                

nn

j

j

j

nn

nj

jn























































2    0    0   0

0    0  2   0

0    0   0  2

1    0    0   0

0    0  1  0

0    0   0  1

2
2

1 )1(

















. 

 
Then, for the elements of matrix M we have 
 

mlkj

jl

kjml

jl

kjml Lam ,,,;,,;, ,22                        (3.11) 

 

Since YDDXADDYAX 111   , setting DXZ   and YDV 1 , we obtain the equivalent 

system VMZ  .                                                      

The matrix M is sparse because of the good localization (compact support) of the wavelets. 

Namely, 
kj ,  is 0 outside an interval of length jc 2 around the point kj2 , for some constant c  

(depending of the choice of wavelet system). Because the operator L  involves only differentiation 

and multiplication by another function, it does not change this localization property. So 
kjL ,  is 0 

outside this interval also. Similarly, 
ml ,  is 0 outside an interval of length lc 2 around the point 

ml2 . As j and l  get large, fewer and fewer of these intervals intersect, so more and more of the 

matrix elements 


 

1

0

___________

,,,,,;,,;, )()(2,22 dtttLLam mlkj

jl

mlkj

jl

kjml

jl

kjml   

are 0. So M  is sparse, which makes computation with it easier.  

 

 It is prove in [11] that if 
),(, }{ kjkj  is wavelet system, then there exist constants 0, 54 CC  

such that for all functions g  of the form 



),(

,,

kj

kjkjcg   (the sum is finite), it holds 





),(

2

,

2

5

1

0

2

),(

2

,

2

4 2)(2
kj

kj

j

kj

kj

j cCdttgcC .           (3.12) 

 

The next proposition shows that the condition number of matrix M is bounded, independently of the 
set of indices, so the new equivalent system MZ=V is well conditioned. 

 
Proposition 3.1. [11, Theorem 1.2] Let L be a uniformly elliptic Sturm-Liouville operator. Let 

),(, }{ kjkj  be a complete orthonormal system for ])1,0([2L  such that kj ,  is in ])1,0([2C , satisfies 



0)1()0( ,,  kjkj   and (3.12) holds. Let   be a finite subset of  . Then the condition number of M 

defined  by (3.10) satisfies the following inequality 
 

                  
41

532

#

)(
)(

CC

CCC
MC


  

for any finite set   , where the constants 
321 ,, CCC  are determined by (3.3), and 

54 ,CC  by (3.12). 

 

Remark. In most practical situations, it is usefully to restrict   to have a larger number of 

vanishing moments (see eq. (2.4)). So, if f(t) is a polynomial, then 0, ,,  kjkj fy  , i.e. B is a 

null-matrix. So, according to (2.5), it is much more suitable to work with the scaling function   and 

not with the actual wavelet  . 

In the next example, we will use the Haar scaling function and the corresponding wavelet. It will be 
shown that the numerical results obtained by using the Haar scaling function are better than the ones 

obtained by the Haar wavelet. 
 

Example.  We consider the differential equation 

1)()(  ttutu , 10  t                        

with Dirihlet boundary conditions 

0)1()0(  uu .                    

Its exact solution is 

.1
11

1
)(

2

2

2






  te

e

e
e

e
tu tt   

 

Now, we will obtain the approximate solution 1

su  using a Haar wavelet (2.11). Let 

)}7,3();6,3();5,3();4,3();3,3();2,3();1,3();0,3{( . The differential operator L is )()()( tututLu  , 

so we obtain 

  
kjkjL ,,   ,  ),( kj ,  and  










)()(  0,   

)()( ,1
, ,,,;,

l,mj,k

l,mj,k 
La mlkjkjml  . 

Since 
kjkj fy ,, , , we have  

264

1
, ,3,3  kk fy  , 

____

7,0k . 

 

Solving the linear system YAX   where  ),(, )( kjkjxX ,  ),(, )( kjkjyY , and  ),();,(,;, ][ kjmlkjmlaA , 

mlkjkjml La ,,,;, ,   we get  

264

1
,3 kx , 

____

7,0k  

So the approximate solution is  
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kj
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                  )72()62()52()42( 3

7,3

3

6,3

3

5,3

3

4,3  txtxtxtx  . 

 

In a similar way we obtain the approximate solution 
2

su  using the Haar scaling function (2.10). 

 
 

 



t  Exact solution 

u  
Numerical solution 

1

su  

Absolute error 

of 1

su  

Numerical solution 
2

su  

Absolute error 

of 2

su  

0.0 0 0 0 0 0 

0.1 0.0265183 -0.03125 0.057768 0.09375 0.672317 
0.2 0.0442945 -0.03125 0.075545 0.08125 0.036956 

0.3 0.0545074 0.03125 0.023257 0.06875 0.014243 
0.4 0.0582599 0.03125 0.027009 0.05625 0.00201 

0.5 0.0565906 -0.03125 0.087841 0.05625 0.00034 
0.6 0.0504834 -0.03125 0.072128 0.04375 0.00673 

0.7 0,0408782 -0.03125 0.002570 0.03125 0.009628 
0.8 0,0286795 0.03125 0.016484 0.01875 0.009929 

0.9 0.0147663 0.03125 0.03125 0.00625 0.008516 
1.0 0 0 0 0 0 

 
Table 1. Comparison of the results using Haar wavelet  

                            and Haar scaling function 
 

Remark. Let we note that here we used the simplest scaling function which is not even a smooth 
function. The results can be improved using scaling functions with nicer properties. For 
comparison, in [9] the same equation is solved using the cubic spline scaling function and the 

obtained results are much better. 
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