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Since the first appearance of the term “ophiolite” in 1813, its definition and interpretation was 

under consistent debate. First interpretation of ophiolites as being serpentinized peridotites associated with 

a suite of magmatic rocks evolved exclusively at the ocean floor extruded at  mid ocean ridges (MOR) 

(e.g. Gass, 1968; Moores and Vine, 1971), was later doubted by Miyashiro (1973). Based on geochemical 

studies of the Troodos ophiolite (Cyprus), it was recognized close spatial and temporal occurrence of 

MOR-basalts with magmatic rocks typically showing subduction related calc-alkaline trend. Since then 

the evidence for an arc related origin of many Mediterranean ophiolites has hardened over decades, but the 

contrasting volcanic association of arc-lavas like boninites, arc tholeiites or adakites with MORBs was 

representing a long lasting conundrum. It was only recently recognized that this perplexing issue my be 

solved if the ophiolites formed during initiation of subduction within or near a ridge (Barth et al., 2008, 

Barth and Gluhak, 2009; Reagan et al., 2010; Pearce & Robinson, 2011, Božović et al., 2013). In the 

recent decades worldwide studies of ancient and recent ophiolites and improvement of geochemical 

measurement techniques led to the idea of a broad geotectonic range of ophiolite generation (Dilek and 

Furnes, 2011). Although the magmatic origin of ophiolites in an ocean extension environment is 

unquestioned, Dilek and Furnes (2011) further subdivided ophiolites in supra-subduction zone, continental 

margin, mid-ocean-ridge, plume-type, volcanic arc and accretionary-type ophiolites.  

Tethyan ophiolites crop out in the five major belts: Jurassic Alpine-Apennine belt of the Western 

Mediterranean, Jurassic Dinaride-Hellenide bodies of the Balkan Peninsula, Jurassic-Cretaceous ophiolites 

of Eastern Greece and Turkey, Late Cretaceous bodies of Southern Turkey, Cyprus to Oman and the 

Neogene Himalayan ophiolites (Moores et al., 2000). A distinct feature of the Tethyan ophiolites is the 

geochemical variability between enriched MORB to highly depleted, commonly interpreted to be of 

suprasubduction zone signature (Moores et al., 2000; Dilek and Furnes, 2011).  

In the Balkan Peninsula, two ophiolitic belts are distinguished, that can be followed axially along 

its middle part: they are the Dinaride–Hellenide ophiolite belt in the southwest, and the Vardar belt to the 

northeast. They represent remnants of the Neotethys branch closed during Mesozoic subduction and 

collision (Robertson and Karamata, 1994; Karamata et al., 2000; Dimitrijević, 2001; Karamata, 2006). 

The two ophiolite belts are either relics of two separate major branches of the Neotethys ocean with 

intervening continental blocks (Drina–Ivanjica and Pelagonian zone) that represent terranes separating 

these oceanic branches (Karamata, 2006), or they may represent a single thrust from the Triassic–Jurassic 

Vardar oceanic sequence (from the north) onto the Adria passive margin within a huge nappe system 

(Rampnoux, 1970; Aubouin, 1974; Schmid et al., 2008). In this case the continental blocks represent 

tectonic windows. Together, the belts constitute one of the largest exposures of mantle rocks on Earth, 

with the several thousands of km2 of olistostrome mélanges composed of large ultramafic bodies, cherts, 

gabbroic bodies, basaltic sheeted dyke complexes and volcanic sequences. Harzburgites and lherzolites 

occur as up to kilometre-sized bodies included in the mélange, and as large massifs (100–1000 km2) 

representing thrust sheets overlying the mélange. 
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The bulk of Balkan ophiolites are of Jurassic age, and only recently, the Sava-zone ophiolite of 

late Cretaceous age was differentiated, but only in its northernmost part (Kozara ophiolite; Karamata et 

al., 2000, Karamata et al., 2005, Robertson & Karamata, 1994, Ustaszewski, et al., 2009). In this study we 

focus on the newly discovered ophiolitic outcrops in Macedonia, called Klepa block, for which our new 

age data reveal late Cretaceous age meaning that it represents a piece of an oceanic lithosphere within the 

Sava Zone. Our aim is to compare this ophiolite occurrence with its counterparts in Macedonia and further 

north in Serbia and Bosnia. The Klepa block is a 5 – 6 km NNW – SSE and 1 – 2 km WSW – ENE 

extending inselberg comprising dominantly of volcanic rocks. It is represented by an incomplete ophiolitic 

sequence on Klepa Mt with an age around 80 Ma. It is bordered towards east by a 10-m sized tectonic 

melange comprising of schistose serpentinite-bearing matrix. The Klepa Mountain has a height of 1150 m 

and is visible landmark. The top of Klepa is characterized by a dome-like structure. The volcanic rocks of 

the Klepa ophiolite sequence include pillows, sheet flows, columns, hyaloclastites, dikes and cumulates. 

The rocks are porphyritic, comprising of phenocrystic subhedral olivine pseudomorphs, augite, 

plagioclase and in some samples amphibole. The groundmass consists of tabular and acicular plagioclase 

and amphibole. Secondary minerals include chlorite, calcite, epidote, sericite and clay minerals. Dikes are 

crosscutting pillows sub-vertically, have variable thicknesses of 0.5 – 1.5 m and an overall E – W strike. 

The contact with the neighbouring rock is marked by a cm-thick chilled margin. On the top of Klepa 

Mountain, pyroxene-rich cumulates crop out forming a dome-like structure.  

 Based on mineralogy and  geochemistry of the rocks, four rock types were identified: subalkaline 

transitional basalts, alkaline basalts, Ti-amphibole-bearing microgabbros and trachyandesites/trachytes. 

Alkaline and subalkaline transitional basalts have a porphyritic-aphanitic to aphanitic texture. They can 

form a sub-ophitic or intergranular diabase-like texture with a crystal-rich, coarser-grained, glass-poor 

matrix or a glass-rich porphyritic-aphanitic texture with varioles of plagioclase typical for rapid 

crystallization. Phenocrysts of plagioclase, clinopyroxene and relictic olivine are abundant in various 

combinations and amounts. Amphibole-bearing microgabbros show a microophitic texture of relictic 

hypidiomorphic plagioclase pseudomorphs and green hornblende. Trachyandesite and trachyte are 

leucocratic rocks with a typical porphyritic-aphanitic trachytic texture. These rocks contain phenocrysts  

of sanidine and rare amphibole. In spite of certain petrographic differences, the lavas show relatively 

uniform Sr and Nd and Pb isotopic compositions with a limited range of 87Sr/86Sri and 143Nd/144Ndi  ploting 

out of MORB array towards OIB field. The Pb isotope compositions of Klepa lavas are also invariable 

falling within the OIB field. Trace element patterns show small but regular variations of HFSE, indicating 

variable degrees of partial melting of a relatively homogeneously enriched mantle source. Comparison of 

Klepa data with limited geochemical data from Kozara Mt- late Cretaceous volcanics, reveals important 

resemblance. These geochemical features indicate that the Klepa and Kozara volcanic rocks were 

generated from an enriched, OIB-type (plume-type?) mantle source by different percent of partial melting. 

Our working tectono-magmatic model that can explain the geochemical variation observed in the Sava-

zone volcanics either  involve either plume-related seamounts or a type of fully rifted continental margin 

that is intermediate between the amagmatic Iberia/Ligurian Tethys type and the magmatic, plume-

influenced East Greenland type.  

 When we compare Sava zone volcanics with the rocks from the volcanic sequence from Jurassic 

Balkans ophiolites, important differences arise. The petrological and geochemical composition of the 

Dinaric Ophiolite Unit rocks suggests mid-ocean ridge or back-arc origin. These rocks have depleted 

LREEs when compared to HREEs and radiogenic 143Nd/144Nd isotopic composition similar to MORB 

source. The Western Vardar Ophiolite Unit rocks also show back-arc affinity based on the flat chondrite 

normalised REE patterns, HFSE negative anomalies and moderately radiogenic 143Nd/144Nd composition. 

The Serbian Eastern Vardar Ophiolite Unit rocks show more pronounced subduction related geochemical 

characteristics. In this unit boninites (Serbia-Grcak) and, adakites and keratofires (Macedonia-Demir 

Kapija) are found which originate in a fore-arc region on the intraoceanic subduction system. The 

Macedonian Eastern Vardar Ophiolite Unit hosts rocks of both back-arc and island arc origin. In this unit 

mafic crust is characterised by rocks of back-arc origin. The rocks with adakitic affinity are found in this 

ophiolitic unit. The whole rock and mineral geochemistry record evidence for slab-derived melt 
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contribution to the source of these lavas. The melting of the slab is only possible during subduction of a 

young, hot oceanic crust initiated due to a ridge collapse. The Demir Kapija ophiolites is therefore 

interpreted as being generated due to  subduction initiation at a back-arc basin (Božović et al., 2013).  

 In Summary, in none of Balkan ophiolitic provinces of Jurassic age geochemical and petrological 

association similar to one from late-Cretaceous Sava zone volcanics are observed. Our data suggest that 

Balkan ophiolites of different age demonstrate genetic differences in terms of volcanism that probably 

have triggered substantially different emplacement mechanisms.     
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